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ABSTRACT 

Seasonal Autoregressive Moving Average (SARIMA) models are an extension of ARIMA 

models that specifically address the presence of seasonality in time series data. By 

incorporating both non-seasonal and seasonal components, SARIMA models capture long-

term trends, lagged values within seasons. The SARIMA model was applied to TB data 

obtained in the north health zone of Malawi from January 2013 to September, 2020. The Box-

Jenkin seasonal ARIMA approach was used to identify the best model for forecasting. We used 

the auto.arima function in R to identify the best model to predict future trends in TB case 

notifications. The winter multiplicative method of exponential smoothing was used to forecast 

future trends in TB case notifications. For model selection, we used the Akaike Information 

Criterion (AIC) and the Bayesian Information Criterion (BIC). Quarterly TB case notifications 

were analyzed, stratifying the data by disease site, HIV status, sex, and patient age group. A 

cyclic pattern of TB case notifications was observed, with peaks during the rainy season and at 

the end of the cold season. The best model for predicting future trends in TB case notifications 

was determined to be SARIMA (0, 1, 2) (1, 0, 0)4 (the lower AIC and BIC values, 240.81 and 

246.41, respectively) Additionally, a higher proportion of TB incidence was found among 

males across all age groups. The study’s findings indicate an increasing trend in predicted TB 

incidence in the near future, accompanied by a seasonal pattern. Forecasting of PTB incidence 

between the years 2021 and 2024 showed a slightly increasing trend. The implications of this 

study highlight the importance of health education, timely medical care seeking, and proactive 

service planning to accommodate higher service utilization during high TB risk periods.



 

vii 
 

 

 

TABLE OF CONTENTS 

ABSTRACT .............................................................................................................................. vi 

LIST OF FIGURES ................................................................................................................... x 

LIST OF TABLES ................................................................................................................... xii 

ACRONYMS AND ABBREVIATIONS .............................................................................. xiii 

CHAPTER ONE ........................................................................................................................ 1 

INTRODUCTION ..................................................................................................................... 1 

1.1. Background of the Study ......................................................................................... 2 

1.2. Problem Statement ................................................................................................... 3 

1.3. Study Objectives ...................................................................................................... 4 

1.4. Research Questions.................................................................................................. 4 

1.5. Hypothesis ............................................................................................................... 4 

1.5.1. Null Hypothesis ....................................................................................................... 5 

1.5.2. Alternative Hypothesis ............................................................................................ 5 

1.6. Significance of the Study ......................................................................................... 5 

LITERATURE REVIEW .......................................................................................................... 6 

2.1 Tuberculosis Situation Analysis in Malawi ............................................................. 6 

2.2 Modelling Approach and Evaluation ....................................................................... 7 

2.3 Time-Series Approaches and Models to be Considered in this Study .................... 9 

2.3.1 Autoregressive Models .......................................................................................... 10 

2.3.2 The Moving Average (MA) Model ....................................................................... 10 

2.3.3 Autoregressive Moving Average (ARMA) Model ................................................ 11 



 

viii 
 

2.3.4 Autoregressive Integrated Moving Average (ARIMA) Model ............................. 11 

2.3.5 Development of the SARIMA Model ................................................................... 12 

2.3.6 Autoregressive Fractionally Integrated Moving Average (AFRIMA) models ..... 13 

2.3.7 Exponential Smoothing Technique ....................................................................... 13 

CHAPTER THREE ................................................................................................................. 15 

MATERIALS AND METHODS ............................................................................................. 15 

3.1 Study Design.......................................................................................................... 15 

3.2 Study Setting.......................................................................................................... 15 

3.3 Data Sources .......................................................................................................... 16 

3.4 Study Variables...................................................................................................... 19 

3.5 Data Collection Procedure ..................................................................................... 20 

3.6 TB Case Notification Data as Time Series ............................................................ 20 

3.7 Data Analysis and Procedures ............................................................................... 21 

3.8 Descriptive Analysis .............................................................................................. 21 

3.9 Estimation of Model Parameters ........................................................................... 22 

3.10 Model Comparison and Selection .......................................................................... 23 

3.10.1 Akaike Information Criterion (AIC) ...................................................................... 24 

3.10.2 Bayesian Information Criterion (BIC) ................................................................... 25 

3.11 Examining the Seasonality of the Time Series ...................................................... 25 

3.12 Model Diagnostics ................................................................................................. 26 

3.13 Model Forecasting ................................................................................................. 27 

3.14 Ethical Consideration ............................................................................................ 28 



 

ix 
 

CHAPTER FOUR .................................................................................................................... 29 

RESULTS AND INTERPRETATION ................................................................................... 29 

4.1 Descriptive Results of TB Case Notifications ....................................................... 29 

4.2 TB Case Notification Rates ................................................................................... 31 

4.3. Building the ARIMA model .................................................................................. 36 

4.4. The Ljung-Box test results for the randomness of the residuals ........................... 44 

4.5. Forecasted TB Case Notifications for the Next 12 Seasons .................................. 47 

4.5.1. Comparison of Competing Models for Predicting Future Seasonal Patterns in TB 

Case Notification in the .................................................................................................... 51 

DISCUSSION OF THE RESULTS ......................................................................................... 53 

5.1 The Most Suitable Model to Predict Future Trends in TB .................................... 53 

5.2 Pattern in TB Case Notification in North Health Zone ......................................... 54 

5.3 Forecasted Incidence of TB Case Notification ...................................................... 56 

5.4 Effects of Social-Demographic Factors on TB Case Notification ........................ 57 

5.5 The influence of Setting on TB Case Notifications ............................................... 58 

5.6 The Choice for ARIMA Models ............................................................................ 59 

CHAPTER SIX ........................................................................................................................ 60 

CONCLUSIONS, RECOMMENDATIONS, LIMITATIONS AND FUTURE 

DIRECTION OF RESEARCH ............................................................................................ 60 

6.1 Conclusions ................................................................................................................ 60 

6.2 Recommendations ................................................................................................. 61 

6.3 Limitations of the Study ........................................................................................ 62 

REFERENCES ........................................................................................................................ 64 

Appendix .................................................................................................................................. 74 

 



 

x 
 

 

LIST OF FIGURES 

Figure 1: Graph of TB case notifications rates per given year (2013 -2020) .......................... 32 

Figure 2: TB case notification rate (CNR) per 100, 000 population as stratified by the Age 

group ........................................................................................................................................ 33 

Figure 3: TB case notification rate (CNR) per 100, 000 population (by Sex) ......................... 34 

Figure 4: TB case notification rate (CNR) per 100, 000 population (by HIV Status) ............. 35 

Figure 5: TB case notification rate (CNR) per 100, 000 population (by District) ................... 36 

Figure 6: Quarterly TB case notification rates from January 2013 to September 2020 .......... 37 

Figure 7: ACF and PACF graph for the un-differenced time series data ................................ 38 

Figure 8: Time plot, ACF and PACF plot for the ARIMA (1, 1, 1) model residual ............... 42 

Figure 9: Time plot, ACF and PACF plot for the ARIMA (0, 1, 2) (1, 0, 0)4 model residual 42 

Figure 10: Time plot, ACF and PACF plot for differenced seasonal ARIMA (1, 1, 3) model 

residual. .................................................................................................................................... 43 

Figure 11: Time plot, ACF and PACF plot for differenced seasonal ARIMA (1, 1, 0) model 

residual ..................................................................................................................................... 43 

Figure 12: The residual ARIMA (0, 1, 2) graph ...................................................................... 46 

Figure 13: Autocorrelation plots of the residuals from ARIMA (0, 1, 2) model ..................... 47 

Figure 14: Forecast from the Exponential smoothing method................................................. 48 

Figure 15: Forecasts from the four competing ARIMA models .............................................. 48 



 

xi 
 

Figure 16: The predicted/forecasted number of TB case notification for the north health zone 

of Malawi from October 2020 to December 2027 ................................................................... 49 

 

  



 

xii 
 

LIST OF TABLES 

Table 1: Reference TB case definition..................................................................................... 18 

Table 2: Description of all the variables used in this study ..................................................... 19 

Table 3: Summary of study sample size .................................................................................. 20 

Table 4: Socio-demographic and clinical characteristics of the study participants in the north 

health zone of Malawi, January 2013 – September 2020. ....................................................... 31 

Table 5: AIC values for suggested ARIMA models of TB case notification rates time series 

data by using stepwise selection. ............................................................................................. 39 

Table 6: Estimates of parameters from the ARIMA (0, 1, 2). ................................................. 41 

Table 7: Estimates of parameters from the competing models ................................................ 41 

Table 8: Ljung - Box Goodness-of-fit Test Results of ARIMA (0, 1, 2) model ..................... 44 

Table 9: Predicted future seasonal patterns in TB case notification for the north health zone of 

Malawi from October 2020 to September 2023. ..................................................................... 50 

 

  



 

xiii 
 

ACRONYMS AND ABBREVIATIONS 

ACF   Autocorrelation Function  

AIC   Akaike Information Criteria 

AICc   Corrected Akaike Information Criteria 

AR   Autoregressive  

ARIMA  Autoregressive Integrated Moving Average 

ARMA  Autoregressive Moving Average 

BIC   Bayesian Information Criteria 

CDR   Case Detection Rate 

CI   Confidence Interval 

DHS   Demographic Health Survey 

DOTS   Directly Observed Treatment Short-course 

GAMs   Generalized Additive Models 

HIV   Human Immunodeficiency Virus 

HMIS   Hospital Management Information System  

SARIMA  Seasonal Autoregressive Integrated Moving Average 

MA   Moving Average 

MDR-TB  Multiple Drug Resistant Tuberculosis  



 

xiv 
 

MHMIS  Malawi Hospital Management Information System  

MoH   Ministry of Health 

NTP    National Tuberculosis Programme  

PACF   Partial Autocorrelation Function  

SA      Seasonal Amplitude 

SDGs   Sustainable Development Goals 

SP    Strategic Plan 

TB   Tuberculosis  

WHO   World Health Organisation  



 

1 
 

 

 

CHAPTER ONE 

INTRODUCTION 

Tuberculosis (TB) is a global public health concern. Surveillance programs present invaluable 

epidemiological information regarding their temporal evolution, particularly for pulmonary 

tuberculosis (PTB), the most common form of TB and the one that presents the greatest 

challenge in public health. Trends and seasonal variations have been demonstrated in a number 

of studies in different countries, with reported peaks in late winter and early summer or spring 

(Gashu, 2018).  

According to Mohammad (2012), predictions of future events and conditions are called 

forecasts and the act of making such predictions is called forecasting. Forecasting is very 

important as predictions of future events must be incorporated into the decision-making 

process. In forecasting events that will occur in the future, information concerning events that 

have occurred in the past must be relied on.  

In order to prepare forecasts, past data needs to be analysed to identify a pattern that can be 

used to describe them. Then, this pattern is extrapolated or extended into the future. This 

forecasting technique rests on the assumption that the pattern that has been identified will 

continue to make good predictions. If the data pattern that has been identified does not persist 

into the future, then this indicates that the forecasting technique used is likely to produce 

inaccurate predictions (Bowerman and O’Connel, 1993). 

Most time-based forecasting problems involve the use of time series data. In this study, time 

series will be used to prepare forecasts.  A time series is formed from measurements of a 

variable taken at regular intervals over time. It is a stochastic process that amounts to a 

sequence of random variables (Box & Jenkins, 1976). The TB case notifications fall under the 

category of time series. According to Box & Jenkins (1976) time series can be used in the 
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application of forecasting of future values of a time series from current and past values and 

could be used for forecasting TB case notifications. 

1.1. Background of the Study 

The study on modelling seasonal patterns in TB case notification aims to understand and 

predict the temporal variations in tuberculosis (TB) incidence throughout the year. TB is still 

one of the leading infections causing deaths, killing at least 2 million people every year (WHO, 

2018).  In 2018, an estimated 7.2 million people developed active TB, resulting in 1.2 million 

TB-related deaths (WHO, 2018). However, only 6.9 million cases were notified, indicating a 

gap in the number of cases that were not officially notified. TB remains a significant global 

health concern, and its transmission dynamics often exhibit seasonal patterns. These patterns 

can be influenced by various factors, such as climatic conditions, socioeconomic factors, 

healthcare access, and population mobility (Choi, Seo, Choi, Kim, & Youn, 2013). 

Understanding the seasonal variations in TB cases can help public health authorities develop 

targeted interventions, allocate resources effectively, and improve disease control strategies. 

Previous research has suggested that TB incidence rates often fluctuate seasonally, although 

the specific patterns and underlying drivers can vary across different regions and populations. 

Several studies, conducted by Bras et al. (2014) and Zhang et al. (2020) in China, Moosazadeh 

& Amiresmaili. (2018) in Iran, (Kirolos, et al., 2021) in Malawi, and Gashu, (2018) in Ethiopia, 

have observed seasonal variation in TB case notification.  Some of these studies have linked 

TB transmission to climatic factors, such as temperature and humidity (Gashu, 2018), Wubuli 

et al. (2017), Yang et al. (2014), while others have identified socioeconomic factors such as 

poverty Bohena, et al (2019), Mososazadeh et al. (2014), and human behaviour such as delay 

in diagnosis or delay in seeking health care (Fares 2011) as key contributors. Nyirenda (2006) 

attributed seasonal variation to overcrowding. The sex and age of an individual are also 

regarded as determinants of TB case notification Soetens et al. (2013). The present study aims 

to identify a suitable time series model to investigate seasonal patterns in TB notification and 

forecast future trends in TB case notification in the north health zone of Malawi. The findings 

will contribute to the development of more effective and targeted interventions to combat TB 

and reduce its burden on public health systems. 
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1.2. Problem Statement 

While seasonal patterns in diseases such as malaria, influenza, and meningitis are well 

acknowledged in Malawi, this remains subtle for diseases such as TB. Seasonal patterns in TB 

case notification have been documented in other countries in Asia, Europe, and other parts of 

Africa, e.g., Ethiopia and Nigeria (Roderick, 2016). The patterns of seasonal peaks and troughs 

in TB numbers reported in such studies appear to vary by country and hemisphere. The reasons 

for such variations are currently not well understood, and it is likely that there are several 

interrelated factors. Seasonal variations affect the health system’s functioning, including TB 

services, but there is little evidence about seasonal variation in TB case notification in tropical 

countries, including Malawi. Understanding the epidemiology of TB in the country in terms of 

seasonal variation would make significant contributions to designing high-yield case-finding 

strategies. A few studies done in Ethiopia (Gashu, 2018), Zimbabwe (Takarinda, Harries, & 

Mutasa-Appolo, 2020), the Republic of South Africa, Morocco (Ottmani, Obermeyer, 

Bencheikh, & Mahjour, 2021), and Asia (Zhang, et al., 2020) have tried to indicate the seasonal 

variation in TB, but their findings are inconsistent and limited in scope. This study sought to 

fill this knowledge gap using TB data reported in the health zone under study.  

Analysis of routinely collected Hospital Management Information System (HMIS) data in the 

context of a TB disease programme, involves an investigation of changes in rates over time, 

followed by attempts to understand their underlying causes (WHO, 2018). Proper 

understanding and possible prediction of patterns in TB case notification would aid in focused 

programming of TB control and prevention. There is rich data that is currently routinely 

collected within the health system that is underutilized. This study, therefore, will focus on 

modelling the available data in order to come up with the best time-series model to investigate 

seasonal patterns in TB case notification and, in turn, use the developed model to predict future 

seasonal patterns in TB case notification.  

Predicting the incidence of TB plays an important role in planning health control strategies for 

the future, developing intervention programs and allocating resources where they are needed 

most.  
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1.3. Study Objectives  

The purpose of this study was to predict future trends in the incidence of TB in the north health 

zone of Malawi. To meet this purpose, the following were the specific objectives of this study;  

1.3.1. To identify a suitable time series model to investigate seasonal patterns in TB 

case notification in the north health zone in Malawi. 

1.3.2. To use the identified time series model to predict future seasonal patterns in TB 

case notification. 

1.3.3. To suggest potential causes for the identified patterns and also suggest what 

interventions could be put in place in view of this. 

1.4. Research Questions 

The main interest in conducting this study is in specific questions that address specific 

objectives of this study. In order to answer the research objectives, we define the following 

research questions; 

1.4.1 What is a suitable time series model that can investigate seasonal patterns in TB 

case notification in the north health zone of Malawi? 

1.4.2 From the identified time series model, what are the predicted future seasonal 

patterns in TB case notification? 

1.4.3 What are the potential causes of the identified patterns, and what interventions 

could be put in place in view of this? 

1.5. Hypothesis 

The following are the null and alternative hypotheses for the study; 
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1.5.1. Null Hypothesis 

Tb case notification data show seasonality 

1.5.2. Alternative Hypothesis   

TB case notifications do not show a seasonal pattern. 

1.6. Significance of the Study 

Time-series analysis is widely employed in public health research to better describe data and/or 

make inferences that take into consideration the correlation between time-adjacent 

observations. TB research is no exception. The findings from this study will add to the body of 

knowledge about the seasonality of TB case notification and other factors affecting trends in 

TB incidence. According to Gashu (2018), knowledge about seasonality and other factors 

affecting trends in TB incidence will help in predicting future TB incidence epidemics and 

hence help in planning for service requirements, assessing health needs, and manage the disease 

by using the predictions as reference information. 

The study has also suggested the potential causes or risk factors associated with the identified 

pattern and, hence, suggested interventions that could be put in place as a means to combat the 

spread of the disease in the study area. 
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CHAPTER TWO 

LITERATURE REVIEW                                                                                                                           

This chapter provides a summary of important determinants of patterns in TB case notification. 

The chapter further reviews and provides a critique of previous studies that have been 

conducted with the aim of modelling seasonal patterns in TB case notification. 

2.1 Tuberculosis Situation Analysis in Malawi 

TB remains a major public health problem in Malawi and is among the top ten killer disease in 

the country. There have been good achievements over the past two decades in tuberculosis 

control through DOTS strategy. However, the results of the TB prevalence survey conducted 

in 2014 showed that the TB disease burden in Malawi is significantly higher than initially 

estimated by the WHO. The TB prevalence among urban populations was more than double 

the national average. In 2018, the WHO estimated that 181 new and relapse TB cases occurred 

per 100, 000 population. This translated to about 30, 000 new and relapse cases of TB occurring 

in 2018 (Global TB Report 2019). During the same year, nearly 16, 000 new and relapse TB 

cases were reported to the National TB control Program representing about 53% of incidence 

cases.  

Provisional results from the National TB Prevalence Survey completed in 2014 showed a 

higher TB prevalence of 1014/100,000 compared to the previous estimated prevalence of 

373/100,000 by the WHO. According to Nyirenda (2020), in 2014, a total of 17,723 new and 

relapse TB cases were identified, a decline from 19,539 reported in 2013. Treatment success 

rate for smear positive case for evaluated 2013 cohort was at 86%. It was further observed that 

MDR-TB was an emerging issue in Malawi, with a prevalence of 0.4 percent among new and 

4.8 percent among previously treated TB patient populations, respectively.
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Zumla, Chakaya, Centis, Mwaba, & D'Ambrosio (2015) further reported that HIV remains an 

important risk factor for developing active TB disease in Malawi: 52 percent of people with 

TB are also infected with HIV. Ninety five percent of registered TB patients know their status, 

and 92 percent of those infected are on antiretroviral therapy during the period of their TB 

treatment.  

For years, the NTP has collected data such as sex and age for smear positive TB cases only 

because of their importance to public health as the source of the majority of TB infections in 

the community. However, from 2002 onwards, such information started being collected on 

patients with other forms of TB. The study done by Nyirenda, (2006) found that the attack rates 

(new cases per 100,000 population) were highest in people between the ages of 25 and 44 years. 

The age group of 25 – 34 contributed about 40% of all smear positive TB cases while 20% of 

the cases were from 15 – 24 and 35 – 44 age groups. Thus, accounting for 80% of all cases to 

be between the ages of 15 and 44 years.  Between the ages of 0 and 24 there are more females 

with smear positive TB than males, the distribution being equal in the ages of 25 and 34 and 

more men than women after the age of 34. The same distribution followed the same pattern as 

the HIV seroprevalence among the Malawian population.  

In general, the ratio of men to women among TB patients in Malawi from NTP data is 1.1. This 

implies that there are no significant gender differences among TB patients (Boeree, Harries, & 

Godschalk, 2000). A similar study done in northern Malawi has shown that in the HIV era, the 

ratio has decreased from 1.3 to 0.8. The spatial distribution of TB cases in Malawi depends on 

the size of each catchment population. The distribution of diagnostic services and differences 

in health seeking behaviour among different populations may also be contributing factors. In 

general, the southern region districts of Malawi contribute about 60% of all known TB cases 

in the country. 

2.2 Modelling Approach and Evaluation  

Time series modelling was performed to investigate seasonal pattern in TB case notification in 

the health zone under study and hence predict future seasonal patterns in TB case notification 

using key stages specified in the preceding section. When investigating a time series, one of 
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the first things to check before building an ARIMA model is that the series is stationary. That 

is, it needs to be determined that the time series is constant in its mean and variance and that 

the mean and variance are not dependent on time. Below are the necessities of the assumption 

of stationarity; 

i) Stationarity means that the statistical properties of a time series (or rather, the 

process generating it) do not change over time. 

ii) Stationarity is important because many useful analytical tools, and statistical tests, 

and models rely on it. 

iii) Standard techniques are largely invalid where the data is non-stationary. 

iv) Sometimes autocorrelation may result because the time series are non-stationary. 

v) Non-stationary time series regressions may also result in spurious regression, i.e. 

cases where the regression equation show significant relationship between two 

variables when there should not be any such relationship.  

As such, the ability to determine if a time series is stationary is important. Rather than deciding 

between two strict options, this usually means being able to ascertain, with high probability, 

that a series is generated by a stationary process. Furthermore, the Kolmogorov-Smirnov test 

was employed to examine the normality of the data. 

In this study, we looked at a couple of methods for checking the stationarity of the time series. 

This was done so that if the time series is provided with seasonality, trend, or a change point 

in mean or variance, then the influences need to be removed or accounted for. The first method 

that was applied was the auto-correlation function (ACF) and partial auto-correlation function 

(PACF) plots. ACF tells us how correlated points are with each other based on how many steps 

they are separated by. It is used to determine how past and future data points are related in a 

time series. Its values range from -1 to 1. When the ACF plot crosses the blue dashed line, this 

means that the values are correlated, hence non-stationary. For a stationary signal, because we 

expect no dependence with time, we would expect the ACF to go to 0 for each time lag. PACF, 

on the other hand, could be defined as the degree of association between two variables while 
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adjusting the effects of one or more additional variables. PACF is used to find the correlation 

of the residuals (which remain after removing the effects that are already explained by the 

earlier lag(s)) with the next lag value, hence ‘partial’ and not ‘complete’ as we removed already 

found variations before we find the next correlation. So, if there is any hidden information in 

the residuals that can be modelled by the next lag, we might set a good correlation, and we will 

keep that next lag as a feature while modelling. Keeping in mind that while modelling we do 

not want to keep too many features that are correlated, as that can create multicollinearity 

issues. Hence, there is a need to retain only the relevant features.  

The Augmented Dickey-Fuller (ADF) Test is another method that was used to test for 

stationarity. This is another method used to determine more objectively if the data is stationary 

or not. According to Fuller (1976), an ADF tests the null hypothesis that a unit root is present 

in a time series sample. The alternative hypothesis is different depending on which version of 

the test is used, but it is usually stationary or trend-seasonality. ADF is an augmented version 

of the Dickey-Fuller test for a larger and more complicated set of time series models. The ADF 

test statistic, used in the test, is a negative number. The more negative the number, the stronger 

the rejection of the null hypothesis. Since the null hypothesis assumes the presence of a unit 

root, the P-value obtained by the test should be less than the significance level (usually 0.05) 

to reject the null hypothesis.   

The raw original data was plotted to check the time series pattern. After the pattern for the time 

series data was recognised, proper models were fitted to the data. The models were then 

compared for best fit to the data. The AIC and BIC values were used to choose the best fitted 

model among the fitted models. As a general rule, the model with the smallest values of AIC 

or BIC was chosen to be the best model (Koehler & Murphree, 2008). 

2.3 Time-Series Approaches and Models to be Considered in this Study 

In this study, the open-source statistical analysis package R (The R Foundation for Statistical 

Computing, version 5.0.2, 2019) was utilized for estimating the models. The following 

provides an overview of the time-series approaches and models that will be considered for 

modelling seasonal patterns in TB case notifications, along with their corresponding estimation 

strategies: 
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2.3.1 Autoregressive Models  

An autoregressive model is when a value from a time series is regressed on previous values 

from that same time series. In this model, we forecast the variables of interest using a linear 

combination of past values of the variables. Thus, an autoregressive model of order p can be 

written as 

𝑌𝑡 =  𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + 𝛽3𝑌𝑡−3 … + 𝛽𝑝𝑌𝑡−𝑝 + 𝜖𝑡                       

where 𝜖𝑡 is a white noise. A series is called white noise if it is purely random in nature hence 

it has zero mean and a constant variance. The scatter plot for such a series across time indicates 

no pattern and hence forecasting the future values of such a series is not possible.  

  

An AR model is like a multiple regression but with lagged values of 𝑌𝑡 as predictors. This kind 

of model is referred to as an 𝐴𝑅(𝑃) model, an autoregressive model of order p. With this kind 

of model, the assumption is that the past values have an effect on the current values.  

2.3.2 The Moving Average (MA) Model  

In time series analysis, the moving average model (MA model), also known as moving-average 

process, specifies that the output variable depends linearly on the current and various past 

values of a stochastic (imperfectly predictable) term. It is a most common approach for 

modelling univariate time-series. 

A common representation of a moving average model where it depends on q of its past value 

is called MA (q) model and is represented as: 

𝑌𝑡 =  𝛽0 + 𝜀𝑡 + 𝜙1𝜀𝑡−1 + 𝜙2𝜀𝑡−2 + 𝜙3𝜀𝑡−3 … + 𝜙𝑞𝜀𝑡−𝑞 

Where 𝜀𝑡 are the error terms and are assumed to be white noise processes with mean zero and 

a constant variance. 
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2.3.3 Autoregressive Moving Average (ARMA) Model 

These are a kind of model where the time-series may be represented as a mix of both AR and 

MA models referred as 𝐴𝑅𝑀𝐴𝑝𝑞. The general form for such a time-series model, which 

depends on p number of parameters of its own past values and q past values of white noise 

disturbances, takes the following form; 

𝑌𝑡 =  𝛽0 +  𝛽1 𝑌𝑡−1 + 𝛽2 𝑌𝑡−2 + ⋯ + 𝛽𝑝 𝑌𝑡−𝑝 + 𝜀𝑡 + 𝜙1𝜀𝑡−1 + 𝜙2𝜀𝑡−2 + 𝜙3𝜀𝑡−3 … + 𝜙𝑞𝜀𝑡−𝑞 

where 𝜖𝑡 is a white noise.  

2.3.4 Autoregressive Integrated Moving Average (ARIMA) Model 

One of the commonly used prediction models is the ARIMA model, which is a time series 

analysis tool proposed by George Box and Gwilym Jenkins in the 1970s (Box & Jenkins, 1970). 

The ARIMA model regards the data sequence formed by the prediction object over time as a 

random sequence. This model is easy to construct, only requires intrinsic variables, and has 

relatively high prediction accuracy. The ARIMA model has been widely used in the prediction 

of such diseases such as malaria (Anwar M. Y., Lewnard, Parikh, & Pitzer, 2016), influenza 

(He & Tao, 2018), homorrhagic fever (Li, Guo, & Han, 2012) or hand, foot and mouth disease 

(Liu, Luan, Yin, Zhu, & Lu, 2016). The ARIMA model is one of the most classical methods of 

time series analysis which was first proposed by Box-Jenkins in 1976 (Lin, Ezzati, Chang, & 

Murray, 2009). It is represented as a Moving Average (MA) model combined with an AR 

model to fit the temporal dependence structure of a time series using the shift and lag of 

historical information. According to Box, (2015) ARIMA models consist of three sections in 

the order of auto-regression (p), the degree of difference (d) and the order of moving average 

(q). In epidemiological and many other studies, this model has widely been used to predict the 

incidence of infectious diseases such as dengue fever, influenza, hepatitis, etc. In practice many 

time-series are non-stationary and so one cannot apply stationary AR, MA or ARMA processes 

directly. Before constructing the ARIMA model, one firstly needs to identify the stationarity 

state of the observed data in the series, of which the mean value remains constant. If the 

observed data is not stationary, it is then transformed into a stationary time-series by taking a 

suitable difference. If the original data series is differenced d times before fitting an ARMA (p, 

q) process, then the model for the original undifferenced series is said to be an ARIMA (p, d, 
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q) process where the letter ‘I’ in the acronym stands for integrated and d denotes the number 

of differences taken. 

2.3.5 Development of the SARIMA Model 

The seasonal ARIMA model (SARIMA) is an expanded form of ARIMA, which allows for 

seasonal factors to be reflected Bras, Gomevaluationes, Filipe, de Sousa, & Nunes (2014). 

Time series seasonality is an unvarying pattern that recurs over S period of time until the pattern 

changes over again. The SARIMA model integrated both non-seasonality and seasonality 

factors in a generative model. In the SARIMA model, seasonality in AR and MA terms predict 

𝑌𝑡 using data values and errors at time interval that are multiples of 𝑆 (Moghram & Rahman, 

1989). The SARIMA model is given by: 

𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄)𝑆 

Where 𝑝 = 𝐴𝑅 order in non- seasonality, d = difference in non-seasonality, 𝑞 = 𝑀𝐴 order in 

non- seasonality,𝑃 = 𝐴𝑅 order in seasonality, D = difference in seasonality, Q= 𝑀𝐴 order in 

seasonality, and S = recurrence of time periods in the seasonality pattern. The general SARIMA 

model has the following form 

Φ(𝛽𝑆)𝜑(𝛽)(𝑌𝑡 − 𝜇) = Θ(𝛽𝑆)𝜃(𝛽)𝜀𝑡 

The non-seasonality components are; 

𝐴𝑅: 𝜑(𝛽) = 1 − 𝜑1(𝛽) − ⋯ − 𝜑𝑝𝛽𝑝 

𝑀𝐴: 𝜃(𝛽) = 1 + 𝜃1(𝛽) + ⋯ + 𝜃𝑞𝛽𝑞 

The seasonality components are; 

𝐴𝑅: Φ(𝛽𝑆) = 1 − Φ1 − Φ1𝛽𝑆 − ⋯ − Φ𝑃𝛽𝑃𝑆 

𝑀𝐴: Θ(𝛽𝑆) = 1 + Θ1𝛽𝑆 + ⋯ + Θ𝑄𝛽𝑄𝑆 
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In the equations, 𝛽 represents the backward shift operator, 𝜀𝑡 stands for estimated residual error 

at t for 𝜇 = 0 and variance is constant and 𝑌𝑡 represents the observed values at 

𝑡(𝑡 = 1,2,3, … , 𝑘) 𝝓 is a vector of the AR coefficients, 𝜃is a vector of the MA coefficients, 

Φ is a vector of the seasonal AR coefficients, and Θ is a vector of the seasonal MA coefficients.  

In the SARIMA model, seasonal subtraction of appropriate order is used to remove non-

stationary data from the series. A first order seasonal difference is the deviation between a 

value and the corresponding value from the previous year and it is expressed as:𝑌𝑡 = 𝑋𝑡 − 𝑋𝑡−𝑠 

for quarterly time series (S) = 4. 

2.3.6 Autoregressive Fractionally Integrated Moving Average (AFRIMA) 

models 

Autoregressive Fractionally Integrated Moving Average (AFRIMA) models are time series 

models that generalize ARIMA models by allowing non-integer values of the differencing 

parameter. These models are useful in modelling time series with long memory, that is, in 

which deviations from the long-run mean decay more slowly than an exponential decay. The 

acronyms "ARFIMA" or "FARIMA" are often used, although it is also conventional to simply 

extend the "ARIMA (p, d, q)" notation for models, by simply allowing the order of 

differencing, d, to take fractional values. The general formula for the AFRIMA model is given 

below; 

(1 − 𝐵)𝑑 =  ∑ (
𝑑

𝑘
) (−𝐵)𝑘

∞

𝑘=0

=  ∑
Γ(𝑑 + 1)

Γ(𝑘 + 1)Γ(𝑑 + 1 − 𝑘)

∞

𝑘=0

(−𝐵)𝑘 

2.3.7 Exponential Smoothing Technique  

Exponential smoothing was first suggested in the statistical literature without reference to 

previous work by Robert Goodell Brown in 1956 and then expanded by Charles C. Holt in 

1957. Exponential smoothing is a technique used to detect significant changes in data by 

considering the most recent data. Also known as averaging, this method is used in making 

short-term forecasts. The simplest form of an exponential smoothing formula is given by: 

𝐹𝑡 =  𝛼𝐴𝑡−1 +  (1 −  𝛼) 𝐹𝑡−1 
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Here, 

𝐹𝑡  = smoothed statistic; 𝐴𝑡−1 = previous smoothed statistic; 𝛼 = smoothing factor of data; 0 < 

α < 1 and t = time period 

If the value of the smoothing factor is larger, then the level of smoothing will reduce. Value of 

α close to 1 has less of a smoothing effect and give greater weight to recent changes in the data, 

while the value of α closer to zero has a greater smoothing effect and are less responsive to 

recent changes. 

There is no official accurate procedure for choosing α. The statistician’s judgment is used to 

choose an appropriate factor sometimes. Otherwise, a statistical technique may be used to 

optimize the value of α. 

Exponential smoothing is best used for forecasts that are short-term and in the absence of 

seasonal or cyclical variations. As a result, forecasts aren’t accurate when data with cyclical or 

seasonal variations are present. As such, this kind of averaging won’t work well if there is a 

trend in the series. 

Methods like this are only accurate when a reasonable amount of continuity can between the 

past and future can be assumed. As such, it’s best suited for short-term forecasting as it assumes 

future patterns and trends will look like current patterns and trends. While this kind of 

assumption may sound reasonable in the short term, it creates problems the further the forecast 

goes.
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CHAPTER THREE 

MATERIALS AND METHODS 

This chapter provides details on the study design, specifically on the study setting, data sources, 

data collection methods and instruments used, use of the data in this research, data analysis 

approach, assumptions, and their basis. The chapter further presents the study variables to be 

investigated, the model fitting procedure, and forecasting.  

3.1 Study Design  

This was a retrospective study conducted within a hospital setting and involved patients 

diagnosed with TB. The data used for the study was collected from January 1, 2013 to 

September 30, 2020, encompassing all health facilities located in the north health zone of 

Malawi. The study relied on secondary data obtained from hospital records, specifically 

focussing on TB case notifications. All forms of TB cases were included in the study, and data 

was gathered from various healthcare institutions and facilities that offer DOTS services. We 

performed a time series analysis to investigate our hypothesis regarding seasonality in TB case 

notifications. 

3.2 Study Setting 

Malawi is a low-income country located in southern Africa and has a land area of 118, 000 

square kilometres. It shares borders with Zambia to the west, Mozambique to the east, and 

Tanzania to the north and northeast. The country is divided into three administrative regions:  

Northern, Central, and Southern regions. To facilitate operations, the Ministry of Health (MoH) 

has established five health zones, with Southern and Central regions each divided into two 

zones. The five health zones of Malawi are as follows: North, Central East, Central West, South 

East and South West. 
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For the purpose of this study, data was collected from the North Zone of Malawi, with its 

headquarters located in Mzuzu City. The north health zone comprises six administrative 

districts: Chitipa, Karonga, Rumphi, Nkhata-Bay, Mzimba and Likoma. Mzimba district is 

further divided into two health districts namely Mzimba north and Mzimba South. All TB cases 

notified at a facility level are reported to their respective district hospital through the district 

TB coordinator who in turn reports the TB notified cases to the TB zonal Coordinator who is 

based at the zone headquarters (Mzuzu Central Hospital). This study used the data aggregated 

at the zone headquarters.  

Based on census, birth, and death data, the northern region has an estimated total human 

population of 2,289,780 persons and covers a land area of 27, 130 square kilometres, making 

it the smallest region both by population and area. According to (National Statistical Office, 

2018) data, on population density (measurement of average number of persons per square 

kilometre), the northern region has the least population density of the three administrative 

regions with a population density of 84 person per square kilometre. Rumphi district had the 

lowest population density of 50 persons per square kilometre followed by Chitipa with 54 

persons per square kilometre. National Statistical Office, (2018) further reported that Likoma 

district had the highest population density of 726 persons per square kilometres.  Its capital city 

is Mzuzu. Starting in the north and going clockwise, the Northern Region borders Tanzania, 

Lake Malawi, Malawi’s central region, and Zambia. Mzuzu Central Hospital in Mzuzu city is 

the main referral hospital serving the region, with district hospitals, rural hospitals and smaller 

health centres and facilities in the wider areas of the region. 

3.3 Data Sources   

This study used two different kinds of data; TB case notification data and a population dataset. 

Cumulative data on quarterly TB case notification was obtained from the health facility register 

for the period 2013–2020. TB case notification was standardized per 100,000 population per 

year. For the purpose of this study, the case definition used are further defined in Table 1.  

Secondly, yearly district and national population data based on the national demographic health 

survey (DHS) and census was extracted from the population projections report, which was 

released by NSO. The population projections report is one of the many reports NSO has 

produced, including the Census Preliminary Report, released in November 2008, and the Main 
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Census Report, released in 2009 and 2019. The population projections report presents the 

projected absolute numbers and age-sex differentials of population in Malawi until 2050 and 

the national level and until 2030 at the district level. The analytical results were based on data 

from the 2008 and 2018 Population and Housing Census that was conducted by NSO. 

According to NSO, the planning and organizational structure put in place ensured high 

household coverage.  

The population projection data was used in calculating TB case notification rates as aggregated 

by age, age group, HIV status, and district where the TB case was reported. 
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Table 1: Reference TB case definition  

 Clinically diagnosed 

TB case  

A patient who does not fulfil the criteria for 

bacteriological confirmation but has been diagnosed 

with active TB. 

By site  Pulmonary TB 

patient  

Refers to any bacteriologically confirmed or 

clinically diagnosed case of TB involving the lung 

parenchyma or the tracheobronchial tree.  

Extra pulmonary 

TB patient  

 

 

Refers to any bacteriologically confirmed or 

clinically diagnosed patient with TB involving 

organs other than the lungs, e.g. pleura, lymph nodes, 

abdomen, genitourinary tract, skin, joints, bones and 

meninges. 

By history of 

previous 

treatment 

New TB patient   

 

A patient who has never had treatment for TB or who 

has taken anti-TB drugs for less than one month. 

Relapse 

patients  

 

 

A patient who has previously been treated for TB, 

was declared cured or treatment completed at the end 

of their most recent course of treatment, and who is 

now diagnosed with a recurrent episode of TB. 

By HIV 

status  

HIV-positive 

TB patient  

 

 

Refers to any bacteriologically confirmed or 

clinically diagnosed case of TB who has a positive 

HIV test result from the time of TB diagnosis or other 

documented evidence of enrolment in HIV care. 
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3.4 Study Variables 

The study utilized variables from health facility records for its analysis. These variables 

included the age category of the patient, the patient's sex, the notification period of the case, 

the HIV status of the patient, the name of the health facility, and the district where the case was 

reported. The TB case notifications were categorized into three age groups: individuals aged 

below 25 years, those between 25 and 44 years, and those above 45 years. Additionally, the 

data were stratified based on the sex and HIV status of the study participants. 

Table 2: Description of all the variables used in this study  

Ser. # Variable code Description of the variable  Categories  

1 Age-cat Age category of the TB patients in 

years  

0 - 24 years; 25 – 44 years; 

45+ years 

2 Sex  Gender of the TB patient   1 = Male  

2 = Female 

3 HIV Status HIV status of the TB patient Positive  

Negative 

Unknown 

4 Facility  Name of the health facility where  

patients reported their TB status 

All the health facilities 

where the data was collected 

5 District  Name of the district where the 

health facility is located 

Chitipa, Karonga, Rumphi, 

Mzimba North, Mzimba 

South, NKhata-Bay, Likoma 

6 Quarter  Quarter of the year  Q1 = First quarter 

Q2 = Second quarter 

Q3 = Third quarter  

Q4 = Fourth quarter 

7 Year  The year in which the TB case was 

reported to a particular health 

facility 

2013 – 2020 

8 Count  Total number of TB cases reported   

9 Popln Human population   
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3.5 Data Collection Procedure  

The data for this study was obtained from patient records following their completion of 

laboratory tests and clinical diagnosis for TB.  

Table 3: Summary of study sample size 

District  Sample health facilities Number of TB cases 

Chitipa  9                   987 

Karonga  11 1, 821 

Rumphi 8                    929 

Mzimba North 12 5, 447 

Mzimba South 14 1, 890 

Nkhata-Bay 9 1, 212 

Likoma 1                    38 

Total 64 12, 324 

 

3.6 TB Case Notification Data as Time Series 

A time series dataset consists of a sequential of data points recorded at specific time intervals. 

These intervals can be regular, such as, hourly, daily, weekly, monthly, quarterly or annual. 

The primary objective of analysing time series data is to identify and understand the underlying 

components, including trend, seasonality, cyclic patterns, and irregular or random fluctuations 

(Saadettin, 2022). By examining these components, we can describe the behaviour of the time 

series and make forecasts based on its historical and current values.  

Time series analysis has widespread in various fields, including statistics, epidemiology, 

econometrics, mathematical finance, weather forecasting, earthquakes prediction and many 

more (Saadettin, 2022). In the case of this study, the TB case notification data for the north 

health zone of Malawi qualifies as a time series since it was collected and reported at regular 

intervals of quarterly throughout the entire study period. This characteristic has led us to 

employ time series models to forecast future patterns in TB case notifications within the study 

area. 
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3.7 Data Analysis and Procedures 

Data analysis is an important stage in research that is used to transform, remodel and revise   

data in order to reach to a certain conclusion for a given situation or problem. For this study, 

data entry and merging were performed using Microsoft Excel 2013. Exploratory analysis and 

the generation of descriptive statistics to summarize information were conducted using 

Microsoft Excel’s Pivot Tables. Recognising the significance of the data analysis stage, this 

study has divided it into sub-stages, outlined below, to facilitate the interpretation of results 

and ensure a comprehensive analysis. 

3.8 Descriptive Analysis 

Descriptive statistics were employed to characterize the demographic and health attributes of 

the study participants who reported their TB cases to health facilities in the north health zone 

of Malawi between 2013 and 2020. Frequency distribution tables, charts and graphs were used 

to provide a detailed description of the study participants. The time unit utilised in this study 

was quarterly, dividing the year into three-month periods: the first quarter (Q1; January to 

March), second quarter (Q2; April to June), third quarter (Q3; July to September), and fourth 

quarter (Q4; October to December). This resulted in a total of 31 seasons spanning from 

January 2013 to September 2020.  

Additionally, yearly TB case notification rates were computed for all the six districts using the 

following formula: 

𝑇𝐵 𝑦𝑒𝑎𝑟𝑙𝑦 𝑐𝑎𝑠𝑒 𝑛𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑝𝑒𝑟 𝑔𝑖𝑣𝑒𝑛 𝑦𝑒𝑎𝑟

𝑇𝑜𝑡𝑎𝑙 𝑦𝑒𝑎𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
× 100, 000 

  

In addition, time series graphs were sketched to examine stationarity and non-stationarity of 

the mean, variance and seasonality/periodicity or trend of the data. P-value < 0.05 was 

considered to be statistically significant. For the data to be considered stationary, the following 

requirements were satisfied; constant mean and variance, constant autocorrelation structure and 
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the data not containing periodic components. If the data is not stationary, proper differencing 

was applied to make them stationary.    

3.9 Estimation of Model Parameters 

There are several methods such as the method of moments, maximum likelihood, and least 

squares that can be employed to estimate the parameters in the tentatively identified model. 

However, unlike the regression models, most ARIMA models are nonlinear models and require 

the use of a nonlinear model fitting procedure. This is usually automatically performed by 

sophisticated software packages such as Minitab, SAS, and R.  

Let 𝜃 =  (∅1,…,∅𝑝,𝜃1, … , 𝜃𝑞𝜎2)′ denote the vector of population parameter.  

Suppose that we have observed a sample of size T then 

𝑋 =  (𝑋1, … , 𝑋𝑇) 

Let the joint probability density function be (p.d.f.) of these data be denoted  

𝑓(𝑋𝑇 , 𝑋𝑇−1 ,…,𝑋1; 𝜃) 

The likelihood function is the joint density treated as a function of the parameters 𝜃 given the 

data x; 

𝐿(𝜃𝐼𝑋) = 𝑓(𝑋𝑇 , 𝑋𝑇−1 ,…,𝑋1: 𝜃) 

The maximum likelihood estimator (MLE) is 

𝜃𝑀𝐿𝐸 =  arg 𝑚𝑎𝑥𝜃∈∅ 𝐿(𝜃|𝑋) 

where ∅ is the parameter space. 

For simplifying calculations, it is customary to work with the natural logarithm of L which is 

a function referred to as the log-likelihood and is given by the following formula; 
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𝐿𝑜𝑔 𝐿 (𝜃1𝑋) = 𝑙 (𝜃|𝑋) 

Since the logarithm is a monotone transformation the values that maximize 𝐿(𝜃|𝑋) are the 

same as those that maximize𝑙(𝜃|𝑋), that is 

𝜃𝑀𝐿𝐸 =  arg 𝑚𝑎𝑥𝜃∈∅ 𝐿(𝜃|𝑋) =  arg 𝑚𝑎𝑥𝜃∈∅ 𝑙(𝜃|𝑋) 

But the log-likelihood is computationally more convenient. Now, we assume that the derivative 

of 𝑙(𝜃|𝑋) (w.r. 𝜃) exists and is continuous for all 𝜃. 

The necessary condition for maximizing 𝑙 (𝜃|𝑋) is 

𝛿𝑙(𝜃|𝑋)

𝛿𝜃
= 0 

Which is called likelihood equation and hence the maximum likelihood estimate will be the 

solution to 

𝛿𝑙(𝜃|𝑋)

𝛿𝜃
= 0 

3.10  Model Comparison and Selection  

Model selection is a crucial step in the forecasting process as it involves choosing a model that 

could plausibly generate the observed time series and is suitable for producing accurate 

forecasts and prediction intervals. Since the exact model that completely describes a system is 

typically unknown, the objective of model selection, as stated by Leeb & Pötscher (2005), is 

to identify a model that optimizes a particular process. 

The primary goal of model selection is to compare different competing models and select the 

one that best describes the system under investigation. The ultimate aim is to choose the model 

that exhibits the best predictive ability on average. In the context of time series analysis, model 

selection becomes crucial because researchers often encounter multiple competing models that 

may adequately fit the data (Höge, Wöhling, & Nowak, 2018). 
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Modelling, by nature, involves approximating reality, and therefore, model selection aims to 

reject models that deviate significantly from reality and select the one that closely aligns with 

it (Shibata, 1989). Ongbali (2018) emphasizes that the main purpose of model selection is to 

evaluate the performance of various models and identify the most suitable one for a specific 

dataset. Failing to consider proper model selection procedures can lead to misleading 

conclusions in statistical reasoning (Leeb & Pötscher, 2005). 

In this study, we used the Box-Jenkin SARIMA and exponential smoothing approaches to 

identify the best model to forecast future patterns in the TB case notification rate in the north 

health zone of Malawi. We used auto.arima function in R to identify the best model to predict 

future trends of TB case notifications.  Previous research suggest that TB case notification 

exhibit seasonal pattern (Bodena, Ataro, & Tesfa, 2019; Liu, Zhao, & Zhou, 2010; Fares, 

2011). Therefore, when modeling seasonal patterns in TB case notifications, the SARIMA 

model has been widely employed by researchers. It has been found that this method provides 

an appropriate model for forecasting future trends in TB case notifications. The SARIMA 

model has already been specified in the preceding sub-section. Below are several statistics 

commonly utilized in the model selection process by researchers, which this study has also 

adopted. It is generally preferred to select models with smaller values based on the chosen 

criterion, as outlined below. 

In addition, the holdout approach was employed to generate forecasts for the holdout set, which 

represented a future period not used during the model training. The holdout approach offers a 

valuable means of assessing the model's performance on unseen data, allowing for an 

understanding of its generalization capabilities beyond the training period. It also helps identify 

any potential issues of overfitting or underfitting, providing insights into the model's ability to 

capture the underlying trends and dynamics of the time series. 

3.10.1 Akaike Information Criterion (AIC) 

For maximum likelihood or empirical Bayesian, one can use the Akaike Information Criterion 

(Cui & George, 2008). The Akaike, (1973, 1974) information criteria was developed as 

estimators of the expected Kullback-Lieber discrepancy between the model generating the data 

and a fitted candidate model (Cui & George, 2008). The AIC is one of the statistics used to 

select the best model. It is defined as: 
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𝐴𝐼𝐶 = 2𝑘 − 2𝐼𝑛(𝐿)  

Where k is the number of parameters fitted in the statistical model, and L is the maximised 

value of the likelihood function for the estimated model. The smaller values indicate more 

parsimonious models and as such, models with the lowest/minimum AIC is chosen. The term 

2k is a penalty to be paid for overfitting and this discourages adding too many variables in the 

models which always leads to a smaller likelihood. This provides the trade-off between over 

fitting and optimum model fit.  

3.10.2 Bayesian Information Criterion (BIC) 

The BIC is a model selection criterion in statistics, introduced by Schwarz in 1978. It is derived 

from the empirical log-likelihood function and it does not necessitate the specifications of prior 

distributions. This characteristic makes the BIC particularly advantageous in situations where 

setting priors is challenging or impractical (Schwarz, 1978). The BIC is closely related to the 

Akaike Information Criterion (AIC), and both criteria take into account the balance between 

model fit and complexity. They penalize models with a larger number of parameters, aiming 

to strike a balance between goodness of fit and model simplicity. Therefore, the BIC is defined 

as follows; 

𝐵𝐼𝐶 = −2 𝐼𝑛(𝐿) + 𝑘𝐼𝑛(𝑛)  

Where L is the maximised value of the likelihood function of the model, 𝑘 is the number of 

free parameters in the model and n is the number of observations in the time series or simply 

the sample size. 

3.11 Examining the Seasonality of the Time Series 

Time series models are different from Multiple and Poisson Regression models in that time 

series models do not contain the cause-effect relationship. They use mathematical equation(s) 

to find time pattern in series of historical data. These equations are then used to project into the 

future the historical time pattern in the data. There are three types of patterns in time series; 

trend, seasonal and cyclic. A trend pattern exists when there is a long-term increase or decrease 

in the series. These trends may be linear, exponential, or different one can change direction 
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during the time. Seasonal exists when data is influenced by seasonal factors, such as a day, a 

week, month, or a quarter of the year. A seasonal pattern exists of a fixed known period. A 

cyclic pattern occurs when data rise and fall, but this does not happen within the fixed time. In 

addition to the three patterns of time series data, there also exists errors or residuals. The 

process of extracting these components/types of patterns from the time series data is what is 

called decomposition (Cleveland & Tiao, 1976).  

To examine seasonality, seasonal decomposition among time series analysis methods was used 

to calculate the seasonal index. There are two approaches for decomposing time series models, 

there are multiplicative and additive approaches. The multiplicative approach posits that the 

variance in the results can be explained by the product of the trend factor, circular factor, 

seasonal factor, and error. The additive approach posits that the variance can be explained by 

the sum of the four factors of trend, seasonality, residuals and circular. Of these two models, 

the additive seasonal approach is taken if the seasonal variation is consistent despite the 

increase in time series, while the multiplicative seasonal approach is taken if seasonal variance 

increases or decreases depending on the increase or decrease of the time series. Because the 

data of the current study did not have a consistent seasonal variation across the flow of time, 

the multiplicative approach was taken. 

3.12  Model Diagnostics 

Typically, the goodness of fit of a statistical model to a set of data is judged by comparing the 

observed values with the corresponding predicted values obtained from the fitted model. If the 

fitted model is appropriate, then the residuals should behave in a manner that is consistent with 

the model. One of the tests that was used in the diagnostics of this study was the Ljung-Box 

test. Ljung-Box test is a type of statistical test of whether any of a group of autocorrelations of 

a time series are different from zero (Brockwell & Davis, 2002). The null and alternative 

hypotheses for the Ljung-Box test are defined as follows: 

H0: the data are independently distributed (i.e. correlations in the population from which the 

sample is drawn are zero, so that any observed correlation in the data results from randomness 

of the sampling process). 

H1: the data are not independently distributed; they exhibit serial correlation.  



 

27 
 

The test statistic for Ljung-Box test is given by: 

𝑸 = 𝒏(𝒏 + 𝟐) ∑
𝝆𝒌

𝟐

𝒏 − 𝒌

𝒉

𝒌=𝟏

 

Where n is the sample size, 𝜌𝑘
1 is the sample autocorrelation at lag k, and h is the number of 

lags being tested. Under the null hypothesis, Q asymptotically follows Chi-square distribution.  

We reject the null hypothesis and say that the model shows lack of fit if 

𝑄 =  𝑥1−𝛼,ℎ
2  

During the diagnostic testing, we wanted to check the error terms of the chosen time series 

model to be used in making the forecasts. The P-value for the Ljung-Box statistics should be 

greater than the chosen significant level (0.05) and hence we fail to reject the null hypothesis, 

therefore we can make a conclusion that the mean error terms of our model is zero.  

The relationship of the error terms was checked using the ACF plots. This was done by 

checking the ACF of the residuals chart. Our wish was that the ACF values of the error terms 

be non-significant. If the error terms were significant, that means they are correlated, hence our 

time series analysis model does not fully explain the relationship between independent and 

dependent. Thus, the error terms are correlated. Also, if the error terms of the ACF plots are 

not significant, that means the error terms are random and not correlated which is a good thing 

because our chosen time series model can fully explain the relationship between independent 

and dependent. The diagnostic results showed that our chosen model was suitable to fully 

explain the relationship between the dependent and independent, hence it was possible to use 

our chosen model in forecasting future incidence of TB in the north health zone. 

3.13  Model Forecasting 

To forecast the TB case notifications for the future, seasonal ARIMA (0, 1, 2) (1, 0, 0)4 model 

was utilized. The Ljung-Box goodness-of-fit test was also used to ascertain the significance of 

the fitted seasonal pattern. The Ljung-Box test was correctly specified and there was no outlier 

in the data.  
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 Four models were compared for the suitability to be used in the forecasting future incidence 

of TB in the north health zone. After examining different models, ultimately the seasonal 

ARIMA (0, 1, 2) (1, 0, 0)4 model was chosen to be the best model suitable to be used for 

forecasting future seasonal patterns in TB case notification in the north health zone in Malawi. 

The AIC and BIC values were used in determining which models was the most suitable to 

predict future incidence of TB. The study done by Zhang et al. (2020) on predicting TB 

prevalence in China used the ARIMA model to fit the changes of the incidence and also to 

predict the incidence in the future.  This study will investigate the performance of various 

forecasting methods including MA, ARIMA, Holt-Winter’s, and SARIMA for monthly TB 

data forecasting. Na et al. (2004) shows that the ARIMA model can be used to appropriately 

fit the changes of the incidence of PTB in Sichuan province of China. The exponential 

smoothing model was also applied to make short-term predictions of TB case notification rates 

in the study area. 

3.14  Ethical Consideration   

Confidentiality of TB patients has been ensured as each TB patient’s name has not been used 

anywhere in the analysis. The letter of permission was written to the north health zone in 

Malawi to access to their quarterly reports. An authorisation to access TB case notification data 

was granted by the Hospital’s Director – Mzuzu Central Hospital, which is the main referral 

health facility in the health zone under study.  
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CHAPTER FOUR 

RESULTS AND INTERPRETATION  

This chapter presents results of the study from the analysis of the TB case notification data 

collected from the hospital records in the north health zone of Malawi.  The first part provides 

descriptive results of the data analysis, the second part provides the results of the time series 

modelling of the TB case notifications and the last part provides the predicted future patterns 

in TB case notifications. Furthermore, this chapter also provides interpretation to key findings 

of the study. 

4.1 Descriptive Results of TB Case Notifications 

The North Health zone of Malawi has got more than 65 health facilities where TB screening is 

done. This study, however, has considered 64 health facilities where TB screening has been 

done during the study period. Other health facilities where TB screening is also done have not 

been included in this study due to their failure to report TB cases to their respective reporting 

lines. Of these 64 health facilities, there are referral hospitals, district hospitals, 

community/rural hospitals, health centres and prison hospitals. In terms of ownership of the 

health facilities, some are public/government facilities, private profit facilities as well as 

Christian Health Association of Malawi (CHAM) facilities. Between 1st January, 2013 and 30th 

September, 2020, about 12, 324 newly and active diagnosed cases of TB were recorded in the 

North health zone of Malawi. Of these 12173 TB cases notified during the study period, 4800 

(39%) were female and 7, 524 (61%) were male. This means that more males are diagnosed of 

TB in the north health zone as compared to women. Thus, gender of a person could be regarded 

as one factor associated with prevalence of TB. In terms of age category, 2, 594 (21%) were 

from the 0 – 24 years age group, 5, 695 (46%) were between the ages of 24 and 44 while the 

age group 45 years and above were represented by 4, 035 (33%) TB patients.
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The data was also analysed to find out the proportion of TB patients who were HIV-positive. 

Of the 12,324 study participants, 10, 812 (87.7%) knew their HIV status. Of the 10,812 patients 

who had their blood tested for HIV, it was observed that 5, 461 (44.31%) were HIV-negative 

while 5, 351 (43.44%) were HIV-positive and 1, 512 (12.27%) didn’t know their HIV status 

during data collection. This means that the TB and HIV co-infection among the tested TB 

patients in our study was 43.4% which shows that there is a very high burden of TB and HIV 

co-infection incidence in the health zone under study. The results of this study further showed 

that in the north zone there were more male TB patients who are HIV positive across all the 

age groups. 

 In terms of the period of the year, first quarter had a highest TB case notification with 3207 

(26.02%). Second, third and fourth quarters were represented by 3, 026 (24.55%), 3191 

(25.89%) and 2, 900 (23.53%) respectively. Table 4 below summarizes the demographic 

details/characteristics of the TB cases notified during the study period.  
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Table 4: Socio-demographic and clinical characteristics of the study participants in the 

north health zone of Malawi, January 2013 – September 2020. 

Characteristic  Number (N = 12324) Percentage  

Age category in years  

    0 – 24 years  

    25 – 44 years  

    45 years and above 

 

2594 

5695 

4035 

 

21.05 

46.21 

32.74 

Sex  

    Male  

    Female  

 

7524 

4800 

 

61.05 

38.95 

HIV Status  

    Positive  

    Negative  

    Unknown  

 

5351 

5461 

1512 

 

43.42 

44.31 

12.27 

Period (quarter of the year) 

    First quarter 

    Second quarter 

    Third quarter 

    Fourth quarter 

 

3207 

3026 

3191 

2900 

 

26.02 

24.55 

25.89 

23.53 

 

4.2 TB Case Notification Rates 

From figure 1 below we can observe that the number of TB case notification rate was almost 

constant from the year 2013 to 2015 followed by a slight decrease in 2016. This was followed 

by a slightly increase in the year 2017 and 2018 and then there was a sharp rise in the TB case 

notifications in 2019 followed by a sudden decrease in the year 2020. A sharp increase in the 

case notification rate in 2019 may be due to community mass campaign about care seeking 

behaviours which improved and influenced the population’s understanding and behaviour 

about timely health seeking behaviours. A sharp decrease in the TB case notification rate in the 

year 2020 may have been due to the Covid-19 pandemic. During this period, there was apathy 

from the general population in seeking health care and that most health facilities were not 

working normally. Based on annual TB case notifications, the notification rate decreased from 
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80.58 to 48.90 cases per 100,000 population per year between 2013 and 2020. According to 

(National Statistical Office, 2018), the population for the north health zone region increased 

from 1, 826, 802 persons in 2013 to 2, 247, 493 persons in 2020. Therefore, TB case 

notification rates increased to a plateau of 96 cases per 100 000 population in the year 2019 to 

of 48 cases per 100 000 population in 2020. In addition, the TB case notification rate from 

2013 to 2020 trended slightly downward but were still significantly high. 

 

Figure 1: Graph of TB case notifications rates per given year (2013 -2020) 

 

4.2.1. TB Case Notification Rate as Stratified by Age Group, Sex, HIV Status, 

Year and District 

The TB case notification rate was stratified by age group, sex, place of notification, and HIV 

status. Age was categorized into three groups: <25 years (young-aged group), 25-44 years 

(middle-aged group), and above 44 years (aged group). Seasonal trends were observed in the 

middle-aged and aged groups. Similar seasonal variations in the TB case notification rates were 

seen in both the middle-aged and aged groups. However, certain peaks in the TB case 

notification rates seen in the aged group were not observed in both the young-aged and middle-
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aged groups. Furthermore, the young-aged group had the lowest TB case notification rates 

among all the age groups. A study conducted by the National Tuberculosis Commission in 

2018 reported that age-specific notification rates were highest among individuals aged 65 years 

and above. This contrasted with the 2017 study, where individuals aged between 35-44 years 

had the highest notification rates. These results are shown in Figure 2 below. 

 

Figure 2: TB case notification rate (CNR) per 100, 000 population as stratified by the Age 

group 

A similar pattern of seasonal variation was seen in both female and male case notifications 

indicating that sex of an individual is not likely to be a significant factor that influences TB 

seasonality. However, the male gender has a higher TB case notification rate across all the 

years of the study period. The highest record was observed in the male gender in 2017 (398 

cases per 100,000 persons) while the lowest TB case notification rate was observed in female 

gender in 2020 (57 cases per 100,000 persons), as shown in the figure 3 below. This is 

consistent with findings of the national prevalence survey which showed that men had higher 

prevalence compared to women.  
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Figure 3: TB case notification rate (CNR) per 100, 000 population (by Sex) 

In terms of the HIV status of TB patients, we observed some form of a zigzag pattern with lows 

and highs throughout the study period. In the HIV-positive TB patients, the TB case 

notification rate was lowest in the second quarter of 2018 with 7 cases per 100 000 population 

and hit the maximum point in the third quarter of 2019 with 13 cases per 100 000 population. 

For the HIV-negative TB patients, the TB case notification rate hit its all-time lowest point in 

the third quarter of 2016 with 6 cases per 100, 000 population and reached its maximum point 

in the second quarter of 2019 with 15 cases per 100, 000 population. Overall, the TB case 

notification rates for both HIV-positive and HIV-negative TB patients were almost constant 

from the year 2013 to 2018 followed by a sharp increase in 2019 and a sharp decrease in 2020 

as evidenced from figure 4 below. 

107 102

157 146

398

154
195

99
60 61

94 87 94 89
111

57

2013 2014 2015 2016 2017 2018 2019 2020

Year

Case notification rates (by sex)

Male Female



 

35 
 

 

Figure 4: TB case notification rate (CNR) per 100, 000 population (by HIV Status) 

In terms of district where the patients reported their cases, Mzimba North and South were 

combined as one district in the scenario because population projections for the same were 

combined. Figure 5 shows that Mzimba district had the highest TB case notification rates of 

all the district under study throughout the entire study period. There was a decline in the case 

notification rate between 2013 and 2018 with 110 and 85 cases per 100 000 population 

respectively. The district hit its highest point in terms on TB case notification rate in 2019 with 

132 cases per 100 000 population followed by the lowest record in case notification rate in 

2020 with 58 cases per 100 000 population. The lowest case notification rate was observed in 

Chitipa district in 2016 with 9 cases per 100 000 population. The rest of the districts registered 

their lowest record in case notification rate in the year 2020 with Rumphi registering the lowest 

record with 5 cases per 100 000 population.  

The high total TB notification rate as well as EPTB in Mzimba district can be explained by the 

cold weather around the main health facilities of the districts (Mzuzu central hospital, Mzuzu 

health centre, St. John’s hospital as well as Ekwendeni mission hospital). Low temperatures 

lead to low vitamin D which significantly increases the incidence of smear and sputum positive 

tuberculosis. In addition, the high TB case notification rate in the district can be explained by 

the capacity to diagnose TB in individuals owing to availability of expertise as well as 

diagnostics in this district that allow for diagnosis and treatment of TB in individuals at all 
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ages. Mass campaigns can also be used to explain the variation of TB case notification rates 

across the districts whereby there are more campaigns in urban areas (where the major health 

facilities of Mzimba districts are located) than in rural settings.  At this point, heterogeneity of 

TB burden in districts of the health zone might not strongly account for inter-district variation 

due to unavailability of sub national disease burden estimates.  

 

Figure 5: TB case notification rate (CNR) per 100, 000 population (by District) 

4.3. Building the ARIMA model 

The focus of this research was on comparing forecasts in time series analysis of TB case 

notification data. Prior to model fitting, a time series plot was created to assess the behaviour 

of the data over an 8-year period (see Figure 6). From Figure 6, it is evident that the TB case 

notification data exhibit non-stationarity, with a varying mean and fluctuating variance. 

Additionally, there appears to be a cyclical pattern present in the data. Notably, significant 

peaks and troughs are observed, which do not occur at regular intervals, and the time gaps 

between the troughs and peaks are irregular. Figure 6 represents the original dataset before 

applying transformations such as differencing and calculating the moving average for all 

notified TB cases during the study period. 
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The graph illustrates that between 2013 and 2018, the number of TB cases reported ranged 

from approximately 310 to 450 per season. There was a sharp increase in TB case notifications 

from 2018 to 2019, followed by a notable decrease in 2020. Given these observations, it was 

necessary to examine the data for seasonality and describe the nature of the seasonal patterns. 

 

Figure 6: Quarterly TB case notification rates from January 2013 to September 2020 

4.3.1. Stabilising the variance by transforming the data 

Since the graph above shows ups and downs in the data, this prompted us to manipulate the 

data by smoothing out the ups and down by a way of taking the moving average of number of 

TB cases notified during the study period. Data transforms are intended to remove noise and 

improve the signal in time series forecasting. Since our data set contains a time period of four 

quarters, we took a four quarterly moving average on the original data.  

4.3.2. Results of the analysed stationarity of the transformed time series data 

Two methods were used to test for stationarity i.e., ACF-PACF graphs and the ADF unit root 

test. The ACF and PACF plots were used to identify which time series model to use in the 

analysis. From the ACF plot (figure 7), we can see that some of the lines spike through the blue 

dashed lines indicating that our data is non-stationary. Similarly, the PACF plot shows that two 
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of the vertical lines spike through the blue-dashed lines indicating the non-stationarity of our 

time series data. So, both the ACF and the PACF plots display correlation between a series and 

its lags explained by the previous lags. 

 

 

 

 

 

Figure 7: ACF and PACF graph for the un-differenced time series data 

The ADF test results showed that our data is not stationary (Dickey-Fuller = -2.4675, Lag order 

= 3, P-value = 0.3934). Therefore, we fail to reject the null hypothesis at the 5% significance 

level, suggesting that there is insufficient evidence to conclude that the time series is stationary. 

This corresponds to the ACF AND PACF graphs as shown above. As such, this prompted us 

to differentiate the data to make it stationary before testing our time series models.  

4.3.3. Differencing the data 

We performed first-order differencing on our data to eliminate the seasonal component and 

bring the data points closer together. This approach was chosen so as to obtain more accurate 

data compared to higher-order differencing, which would have resulted in wider gaps between 

data points, posing a challenge for forecasting and reducing accuracy. Subsequently, an 

Augmented Dickey-Fuller (ADF) test was conducted to assess the stationarity of the 

differenced data. The ADF test results (Dickey-Fuller = -5.7044, Lag order = 3, P-value = 0.01) 

indicated that our differenced data achieved stationarity.  Since the P-value is less than the 
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chosen significance level of 0.05, we reject the null hypothesis of non-stationarity, conclude 

that the time series is indeed stationary. This suggests that the differencing process successfully 

resulted in achieving data stationarity. 

During the model identification process, we explored various potential models using the 

“auto.arima” function from the “forecast” package in R software. The selection method of the 

best-fitted model was based evaluating the AIC, AICc (Corrected Alkaike Information 

Criterion), and BIC, with minimum values. Typically, the model with the lowest AIC (or AICc) 

is considered a strong candidate for the best-fitted model, rather than sorely relying on the BIC 

value. In Table 5 below, suggested ARIMA models have been presented with their 

corresponding AICc and AIC information criteria.  

Table 5: AIC values for suggested ARIMA models of TB case notification rates time 

series data by using stepwise selection. 

ARIMA(2,1,2)(1,0,1)[4] with drift         : Inf 

 ARIMA(0,1,0)           with drift         : 270.9173 

 ARIMA(1,1,0)(1,0,0)[4] with drift         : 246.3509 

 ARIMA(0,1,1)(0,0,1)[4] with drift         : 244.1917 

 ARIMA(0,1,0)                              : 268.918 

 ARIMA(0,1,1)           with drift         : 250.9219 

 ARIMA(0,1,1)(1,0,1)[4] with drift         : 244.1787 

 ARIMA(0,1,1)(1,0,0)[4] with drift         : 242.5038 

 ARIMA(0,1,1)(2,0,0)[4] with drift         : 244.1948 

 ARIMA(0,1,1)(2,0,1)[4] with drift         : 246.173 

 ARIMA(0,1,0)(1,0,0)[4] with drift         : 260.5784 

 ARIMA(1,1,1)(1,0,0)[4] with drift         : 242.4019 

 ARIMA(1,1,1)           with drift         : 251.0265 

 ARIMA(1,1,1)(2,0,0)[4] with drift         : 243.7547 

 ARIMA(1,1,1)(1,0,1)[4] with drift         : 243.8249 

 ARIMA(1,1,1)(0,0,1)[4] with drift         : 244.742 

 ARIMA(1,1,1)(2,0,1)[4] with drift         : 245.753 

 ARIMA(2,1,1)(1,0,0)[4] with drift         : 244.3371 
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 ARIMA(1,1,2)(1,0,0)[4] with drift         : 244.1503 

 ARIMA(0,1,2)(1,0,0)[4] with drift         : 242.1959 

 ARIMA(0,1,2)           with drift         : 250.5047 

 ARIMA(0,1,2)(2,0,0)[4] with drift         : 243.5275 

 ARIMA(0,1,2)(1,0,1)[4] with drift         : 243.6065 

 ARIMA(0,1,2)(0,0,1)[4] with drift         : 244.6192 

 ARIMA(0,1,2)(2,0,1)[4] with drift         : 245.5176 

 ARIMA(0,1,3)(1,0,0)[4] with drift         : 244.155 

 ARIMA(1,1,3)(1,0,0)[4] with drift         : Inf 

 ARIMA(0,1,2)(1,0,0)[4]                    : 240.8076 

 ARIMA(0,1,2)                              : Inf 

 ARIMA(0,1,2)(2,0,0)[4]                    : 242.4969 

 ARIMA(0,1,2)(1,0,1)[4]                    : 242.5549 

 ARIMA(0,1,2)(0,0,1)[4]                    : 243.5017 

 ARIMA(0,1,2)(2,0,1)[4]                    : 244.3993 

 ARIMA(0,1,1)(1,0,0)[4]                    : 241.2273 

 ARIMA(1,1,2)(1,0,0)[4]                    : 242.7822 

 ARIMA(0,1,3)(1,0,0)[4]                    : 242.7876 

 ARIMA(1,1,1)(1,0,0)[4]                    : 240.8967 

 ARIMA(1,1,3)(1,0,0)[4]                    : 244.7773 

 

Best model: ARIMA (0, 1, 2) (1, 0, 0)4  

As shown in the Table 5 above, the best model under the stepwise method among the other 

models has been chosen as ARIMA (0, 1, 2) (1, 0, 0)4 model with drift and having the 

smallest AIC value of 240.8076. All other models which have greater AIC values have been 

provided only for comparison purposes. After noting the best model based on AIC, we 

estimated the significance of parameters and our results are shown in Table 6 as follows; 
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Table 6: Estimates of parameters from the ARIMA (0, 1, 2). 

 MA1 MA2 SAR1 

Coefficients 1.0770 0.2886 -0.7055 

Standard error  0.2307 0.1994 0.1614 

Sigma squared estimate 131.9 

Log likelihood  -116.4 

AIC = 240.81 AICc = 242.41 BIC = 246.41 

 

In order to select the best model to be used in the prediction, three competing ARIMA models 

were further tested in order to select the model with the best predictive ability. Table 7 below 

provides the estimates from the competing models. Furthermore, ACF and PACF plots were 

sketched for the identified best models together with the competing models. From the ACF & 

PACF plots and the estimates from the competing models, it is obvious that our ARIMA (0, 1, 

2) model remains our best model to be used in the prediction of future trends of TB cases. 

Table 7: Estimates of parameters from the competing models 

Model  AIC AICc BIC 

ARIMA (1, 1, 0) 255.58 265.03 258.39 

ARIMA (1, 1, 3) 251.86 254.36 258.86 

ARIMA (1, 1, 1) 250.50 252.10 256.11 
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Figure 8: Time plot, ACF and PACF plot for the ARIMA (1, 1, 1) model residual 

 

  

Figure 9: Time plot, ACF and PACF plot for the ARIMA (0, 1, 2) (1, 0, 0)4 model residual 
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Figure 10: Time plot, ACF and PACF plot for differenced seasonal ARIMA (1, 1, 3) model 

residual. 

  

Figure 11: Time plot, ACF and PACF plot for differenced seasonal ARIMA (1, 1, 0) model 

residual 
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4.4. The Ljung-Box test results for the randomness of the residuals 

After examining the aforementioned figures, the next step was to select the best-fitting model 

for predicting future trends in TB case notifications in the north health zone of Malawi. To 

accomplish this, we proceeded with the examination of residuals diagnostics, which is essential 

to determine whether the residuals exhibit a white noise process. A white noise process is a 

crucial assumption for a reliable ARIMA model, characterized by a zero mean, constant 

variance, and no serial correlation. In this stage, we specifically focused on the Ljung-Box test 

results to ensure that the residuals did not possess any remaining autocorrelation. The null and 

alternative hypotheses for the Ljung-Box test are gives as follows; 

H0: The residuals are random (independently distributed – the model does not show lack of fit) 

H1: The residuals are not random (not independently distributed, displaying serial correlation 

– the model does show a lack of fit). 

Table 8: Ljung - Box Goodness-of-fit Test Results of ARIMA (0, 1, 2) model  

Seasonal lags X-Squared statistics P-Values 

1 0.0347 0.8523 

2 0.5145 0.7732 

3 1.3645 0.7139 

4 1.6734 0.7955 

5 3.6375 0.6027 

14 11.335 0.6595 

 

4.4.1. The Ljung-Box Test Results for the Randomness of Residuals from 

ARIMA (0, 1, 2) Model 

We applied the Ljung-Box test to the residuals from an ARIMA (0, 1, 2) model fit to determine 

whether residuals are random. In this analysis, the Ljung-Box test results showed that the first 

14 lag autocorrelations among the residuals are zero (p-value = 0.6595) indicating that the 

residuals are random and that the model provides an adequate fit to the data. Therefore, 

according to the results in the Table 8 above, we failed to reject the null hypothesis and 
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conclude that the mean of error terms of our model is zero and that our selected time series 

model fits the data well. In addition, the Box-Pierce test results also showed that the model fits 

the data well (p-value = 0.8591).  

In addition, the autocorrelation plot of residuals (ACF Residuals) from the ARIMA (0, 1, 2) 

model was generated (Figure 12). The autocorrelation plot shows that for the first 14 lags, all 

sample autocorrelation except those at lag 0 and lag 11 fall inside the 95% confidence band 

indicating the residual appear to be random.     

Furthermore, the result is also verified by looking at the correlogram of the residuals as shown 

in the ACF and PACF plots below. From the ACF and PACF plots, we can see that the spikes 

are within the significance limit and mean of the residuals seem to be randomly distributed 

around zero. Thus, the residuals appear to be white noise.  

4.4.2. The Ljung-Box Test Results for the Randomness of Residuals from 

ARIMA (1, 1, 3) Model 

Similar to the result for the ARIMA (0,1,2) model, ACF plot for the residuals (figure 14) shows 

that for the first 14 lags, all sample autocorrelations fall inside the 95% confidence bounds 

indicating the residuals appear to be random. The Box-Ljung test was also applied to the 

residuals from the ARIMA (1, 1, 3) model. The Ljung-Box test results showed that the first 14 

lag autocorrelations among the residuals are zero (p-value = 0.6788) indicating that the 

residuals are random and that the model provides an adequate fit to the data. 

4.4.3. The Ljung-Box Test Results for the Randomness of Residuals from 

ARIMA (1, 1, 0) Model 

The residual model analysis was also performed on ARIMA (1, 1, 0) model to check whether 

it was appropriate or not. From Figure 15 we observed that all the lags except lag 4 were within 

the 95% confidence band. We further observed that ACF plot showed that the residuals formed 

a seasonal pattern. The Ljung-Box test indicated that there was at least one non-zero 

autocorrelation among the first 14 lags. We conclude that there is not enough evidence to claim 

that the residuals are random (p-value = 0.022). 
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4.4.4. The Ljung-Box Test Results for the Randomness of Residuals from 

ARIMA (1, 1, 0) Model 

We conducted the Ljung-Box test on the residuals obtained from fitting an ARIMA (1, 1, 1) 

model to examine whether the residuals exhibit randomness. The Ljung-Box test results 

revealed the presence of at least one non-zero autocorrelation among the first 14 lags. Based 

on these results, we conclude that there is insufficient evidence to support the claim that the 

residuals for ARIMA (1, 1, 1) model are truly random (p-value = 0.059). 

 

 Figure 12: The residual ARIMA (0, 1, 2) graph 

After conducting diagnostic checks, including the Ljung-Box test, we determined that that the 

ARIMA (0, 1, 2) model was the best fit for our data (Sigma squared = 3478, Log likelihood = 

-153.89, AIC = 309.78 and AICc = 309.93 and BICC = 311.11). To assess the diagnostics, we 

examined the ACF and PACF plots as shown in figure 21. The ACF and PACF plots indicated 

that our time series data achieved stationarity. In the ACF plot, I can be observed that all spikes, 

except for one, fall withing the dashed blue dotted lines, indicating stationarity. Similarly, the 

PACF plots shows that all spikes are within the confidence band, further confirming the 

stationarity of our time series data.  
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Figure 13: Autocorrelation plots of the residuals from ARIMA (0, 1, 2) model 

4.5. Forecasted TB Case Notifications for the Next 12 Seasons 

We furthermore compared the four competing models by plotting their graphs which were 

analysed to see which model best predicts the seasonality of TB case notifications. From the 

Figure 22 below, it is noted that ARIMA (0, 1, 1) (1, 0, 0) [4] has the best ability to predict 

future trends in the TB case notifications. The other models fail to qualify because they just 

show a straight line into the future which could not reflect on reality of the future patterns in 

the TB case notifications.  

Based on the two forecasting graphs below, it is evident that the exponential smoothing method 

produced forecasts that lagged behind the actual trend. In contrast, the three ARIMA models 

displayed a straight line of the graph, suggesting that they projected a relatively constant trend 

for future TB incidences. These models indicate a consistent pattern without significant 

fluctuation. However, the seasonal ARIMA model, identified as the optimal model, exhibited 

a wave-like pattern in the forecast area of the graph. This model accounted for seasonal 

fluctuations and projected a pattern similar to the observed historical data. 
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Figure 14: Forecast from the Exponential smoothing method 

 

Figure 15: Forecasts from the four competing ARIMA models 

We applied the Winter’s Multiplicative method to the seasonal ARIMA (0, 1, 2) (1, 0, 0)4 

model to predict future trends in TB case notifications in the north health zone of Malawi at 

95% confidence interval (CI). The predictions were done for the next 12 quarters (fourth 
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quarter of 2020 to third quarter of 2027). Figure 5 below shows the graphical presentation of 

the forecasted TB case notifications for the north health zone in Malawi. The predictions were 

done on the assumptions that there shall be no any extra interventions done by the government 

and other stakeholders that would otherwise have an influence on the number of TB case 

notified in the health zone. We assumed that the current prevailing interventions will continue 

for the next few years. 

 

Figure 16: The predicted/forecasted number of TB case notification for the north health 

zone of Malawi from October 2020 to December 2027 

Table 9 below, provides a forecasted trend analysis/ pattern of TB case notification. In 

summary, the results show that the forecast follow the recent trend in the data with some form 

of seasonality in it. The rapidly and largely increased prediction intervals indicate that the TB 

incidence may possibly start increasing or decreasing at any period of time and in contrast, the 

point forecast tend upwards during the first four quarters of our prediction time and then change 

its course by following a downwards trend, and the prediction intervals allow for the data to 

trend upwards and downwards during the forecast period. Other prediction studies with non-

time series methods on tuberculosis data have been conducted as well, such as a study in Spain 

(Rios, Garcia, Sanchez, & Perez, 2000) with mathematical modelling on the registered cases 

of tuberculosis from 1971 until 1996, which has predicted the pattern for tuberculosis incidence 

and showed increases in the incidence. The incidence of pulmonary tuberculosis in Iran has a 
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seasonal trend (Rafei, Pasha, & Jamshidi, 2012) and a study from the Mazandaran Province of 

Iran has reached similar results (Moosazadeh, et al., 2014). 

Table 9: Predicted future seasonal patterns in TB case notification for the north health 

zone of Malawi from October 2020 to September 2023. 

Point of forecast Predicted number of 

TB cases notifications 

95 % Confidence Interval (CI) 

Lower value Upper value 

2020 Q4 421.24 398.7291 443.7551 

2021 Q1 458.89 406.9944 510.7867 

2021 Q2 483.00 408.6401 557.3603 

2021 Q3 484.25 392.7887 575.7163 

2022 Q4 469.00 370.1925 567.8024 

2023 Q1 442.44 341.5747 543.2995 

2023 Q2 425.43 323.3534 527.5028 

2023 Q3 424.54 321.2719 567.6491 

2023 Q4 435.31 328.5908 542.0228 

2024 Q1 454.04 340.4404 567.6491 

2024 Q2 466.04 344.8585 587.2301 

2024 Q3 466.66  338.3474 594.9877 

2024 Q4 459.08 326.2534 591.9877 

2025 Q1 445.86 310.5567 581.1547 

2025 Q2 437.39 300.0671 574.7134 

2025 Q3 436.95 297.6326 576.2685 

2025 Q4 442.31 299.9889 584.6250 

2026 Q1 451.63 305.0566 598.2093 

2026 Q2 457.61 306.5083 608.7021 

2026 Q3 457.92 302.4292 613.4016 

2026 Q4 454.14 295.2389 613.0342 

2027 Q1 447.56 286.1218 608.9926 

2027 Q2 443.34 279.6036 607.0841 

2027 Q3 443.13 277.1119 609.1381 

2027 Q4 445.79 277.0619 614.5200 
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4.5.1. Comparison of Competing Models for Predicting Future Seasonal Patterns 

in TB Case Notification in the 

In our analysis, we compared several competing models to predict future seasonal patterns in 

TB case notifications in the North Health Zone of Malawi from October 2020 to September 

2023. Among the models considered, one model demonstrated a strong fit to the data, capturing 

the underlying patterns and variations observed in the historical TB case notifications. 

However, it is important to note that three other models indicated a different outcome. 

According to these models, the predicted pattern of TB case notifications would remain 

constant over the specified time period, without any noticeable changes or seasonal 

fluctuations. This divergence in the models' predictions highlights the complexity of 

forecasting and the inherent uncertainty involved in capturing the dynamics of TB case 

notifications. While one model suggests a dynamic pattern with varying seasonal trends, the 

other models indicate a more stable and consistent pattern throughout the forecasted period as 

shown in Table 10 below. 

 

 

 

 

 

 

 



 

52 
 

Table 10: Comparison of Competing Models for Predicting Future Seasonal Patterns in 

TB Case Notification in the North Health Zone of Malawi from October 2020 to 

September 2023 

Point of 

forecast 

ARIMA (0,1,2) 

(1,0,0)4 

ARIMA (1, 1, 

0) 

ARIMA (1, 1, 

3) 

ARIMA (1, 1, 

1) 

2020 Q4 421.24 398.52 406.69 400.92 

2021 Q1 458.89 397.83 423.92 400.92 

2021 Q2 483.00 397.40 433.52 400.92 

2021 Q3 484.25 397.14 433.03 400.92 

2022 Q4 469.00 396.98 433.06 400.92 

2023 Q1 442.44 396.77 433.06 400.92 

2023 Q2 425.43 396.75 433.06 400.92 

2023 Q3 424.54 396.73 433.06 400.92 

2023 Q4 435.31 396.72 433.06 400.92 

2024 Q1 454.04 396.72 433.06 400.92 

2024 Q2 466.04 396.72 433.06 400.92 

2024 Q3 466.66  396.72 433.06 400.92 

2024 Q4 459.08 396.72 433.06 400.92 

2025 Q1 445.86 396.72 433.06 400.92 

2025 Q2 437.39 396.72 433.06 400.92 

2025 Q3 436.95 396.72 433.06 400.92 

2025 Q4 442.31 396.72 433.06 400.92 

2026 Q1 451.63 396.72 433.06 400.92 

2026 Q2 457.61 396.72 433.06 400.92 

2026 Q3 457.92 396.72 433.06 400.92 

2026 Q4 454.14 396.72 433.06 400.92 

2027 Q1 447.56 396.72 433.06 400.92 

2027 Q2 443.34 396.72 433.06 400.92 

2027 Q3 443.13 396.72 433.06 400.92 

2027 Q4 445.79 396.72 433.06 400.92 
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CHAPTER FIVE 

DISCUSSION OF THE RESULTS 

This chapter discusses findings of the study. It compares the findings of the study to those 

findings from previous studies, while noting interesting findings, agreements, contradictions 

or inconsistencies. 

5.1 The Most Suitable Model to Predict Future Trends in TB  

A seasonal ARIMA model was developed to forecast the future quarterly incidence of TB cases 

in north health zone of Malawi. The results of our analysis indicate that the SARIMA (0, 1, 2) 

(1, 0, 0)4 model provides superior forecasts for the TB data. We evaluated the model’s 

performance using metrics such as AIC, AICc, BIC, and by examining the residuals for white 

noise pattern. In a related study conducted by Permanasari et al., they evaluated the 

performance of six different forecasting methods, including linear regression, moving average, 

decomposition, ARIMA, Neural Network and Holt-Winter’s, for monthly tuberculosis data 

prediction. The study concluded that the most suitable model of their data was the ARIMA 

model (Permanasari, Rambli, & Dominic, 2011).  

In another study by Zhang et al., two models, ARIMA and (GRNN)-ARIMA, were investigated 

for predicting tuberculosis incidence. The time series of tuberculosis exhibited a gradual 

secular decline and a striking seasonal variation. Among several plausible ARIMA models, the 

ARIMA (2, 1, 0) × (0, 1, 1) [12] model was selected. The author reported that the hybrid model 

had lower mean absolute error and mean absolute percentage error compared to the ARIMA 

model (Zhang, et al., 2013). The above studies demonstrate the effectiveness of ARIMA 

models in forecasting TB incidence and highlight the importance of selecting appropriate 

models to capture the underlying patterns and dynamics of the data.
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The ARIMA model assumes that there is a certain relationship between the future state of the 

target object and the historical data of the past and the present (Yang, Duan, Wang, Zhang, & 

Jiang, 2014). According to the seasonal fluctuations of the target sequence, the ARIMA model 

can be divided into a seasonal model or a non-seasonal model. This model overcomes the 

limitation of the requirement for a prior assumption about the development mode of the time 

series. The process of identification, estimation, and diagnosis is repeated until the optimized 

model is obtained (Box & Jenkins, 1976). The ARIMA model is widely used in many types of 

time series analysis and is by far the most versatile time series prediction method. Anwar et al 

used the ARIMA (4,1,1) (1,0,1)12 model to predict future malaria incidence in Afghanistan. Li 

et al used the ARIMA (0,1,1) (2,1,0)12 model to forecast the incidence of haemorrhagic fever 

with renal syndrome in Hebei Province, China. Mahmood et al used the ARIMA (0,1,1) 

(0,1,1)12 model to predict the incidence of smear-positive TB cases in Iran (Moosazadeh, 

Khanjani, Nasehi, & Bahrampour, 2015). However, the ARIMA model is only suitable for a 

short-term prediction and can only capture the linear relationship in the incidence trend. As the 

occurrence of TB is affected by many known and unknown factors, the incidence trend tends 

to exhibit nonlinear characteristics, which cannot be effectively solved through the ARIMA 

model. 

The Box-Jenkins approach described and implemented in this study is well-established and 

widely used method in time series analysis. It provides a solid foundation for understanding 

the autoregressive, moving average, and differencing components of the time series data. 

However, it is important to acknowledge that there are alternative approaches, such as 

generalised additive models and their extensions that could have been explored to incorporate 

seasonality.  

5.2 Pattern in TB Case Notification in North Health Zone 

A detected pattern of peaks and troughs in TB case notifications in our study is consistent with 

the pattern detected in other studies for TB in different countries (Khaliq, Syeda, & Chaudhry, 

2015; Liu, Luan, Yin, Zhu, & Lu, 2016; Yang, Duan, Wang, Zhang, & Jiang, 2014; and Bras, 

Gomes, Filipe, de Sousa, & Nunes, 2014). First quarter (rainy season) was the dominant quarter 

seconded by third quarter. Fourth quarter has the least number of TB cases during the study 
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period. We can postulate that high cases of TB reported during the third quarter, which lies 

between the cold season and the hot season. It is possible that this was so because of a number 

of reasons; Firstly, poor ventilated rooms crowded with people could increase the chances of 

transmission among the infections source and the contractors in cold seasons. In the north 

health zone of Malawi, cold season is from May to August, and the coldest months are June 

and July in most of the year. During this cold period, people are more likely to stay indoors 

and close the windows because of low temperatures. We thus suggest that TB transmission is 

rampant during this period due to lack of fresh air.  

Secondly, it has been observed that there are delays in seeking medical healthcare during the 

coldest months, specifically in June and July. (Yang, Duan, Wang, Zhang, & Jiang, 2014) 

suggested that individuals may be less inclined to seek medical help when the weather is very 

cold unless absolutely necessary. Consequently, people tend to seek medical assistance more 

readily when the weather becomes somewhat warmer, typically between August and 

September. During this warmer period, the consultation rate between patients and healthcare 

providers tends to be relatively high. 

According to (Yang, et al., 2014) delays in seeking healthcare contribute to diagnostic delays, 

which can increase the risk of disease transmission due to the extended communicable period 

of tuberculosis (TB) during cold seasons. Moreover, it is believed that in winter, symptoms of 

TB may not immediately manifest after infection. However, as summer approaches and the 

temperature increases, the bacterium starts to proliferate and grow, leading to the onset of 

noticeable symptoms of the infection (Smith, 2003). 

Our study further discovered that the number of TB cases was high during the first quarter of 

the year which coincides with the rainy season in the zone.  Similar findings were observed in 

Cameroon (Anyangwe, et al., 2006) and Korea (Choi, Seo, et al., 2013), where TB cases 

increased during the rainy season. The authors attributed it to two potential factors: vitamin D 

deficiency due to reduced sunlight exposure and higher risks of indoor infection due to humid 

and cold weather. Combined with high incidence of other seasonal respiratory infections, these 

factors may result in worsening symptoms, potentially leading to a peak in TB notifications 

during the rainy season in January to March, first quarter (Murray, 2012).  
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5.3 Forecasted Incidence of TB Case Notification 

The study observed is a significant declining trend in TB case notification starting from the 

fourth quarter of 2022, which is likely associated with the scale-up of antiretroviral therapy 

(ART) and increased access to ART services. The high prevalence of HIV in Malawi suggests 

that TB incidence in the HIV-positive population plays a crucial role in community TB 

prevalence and transmission (Lawn, Kranzer, & Wood, 2009). The study suggests that the 

reduction in TB risk due to the "ART protective effect" in this susceptible population may 

contribute to the declining trend in TB incidence and case notification. Factors such as high 

mortality prior to TB case detection, improving socio-economic status, and isoniazid 

preventive treatment for HIV-positive individuals may confound the observed trend (Lawn, 

Kranzer, & Wood, 2009).  

Results of the present study match a study in Spain that also predicted increases in TB cases 

and emphasizes the suitability of time series analysis models, particularly the seasonal ARIMA 

model, for examining trends and predicting TB incidence (Kam, Sung, & Park, 2010). 

However, the study's forecasts suggest that there will be no apparent improvement in the high 

burden of TB in the near future in the north health zone of Malawi. This contradicts global 

trends reported by the WHO, which indicate a decline in TB burden worldwide. 

In this study, the forecasts show that there will be no apparent improvement in the high burden 

incidence of TB in the north health zone of Malawi in the near future. The overall predicted 

outcomes indicate that the reported quarterly TB incidence cases will slightly increase in the 

nearest future in the north health zone. Nevertheless, our findings are inconsistent with WHO 

(2018i) which highlighted that the disease burden caused by TB is falling globally, in all WHO 

regions, and in most countries, but not fast enough to reach the first (2020) milestones of the 

End TB strategy. Our findings revealed that progress in TB control in the north health zone 

needs to be more intensified and adequate interventions (e.g., the introduction of new vaccine, 

advanced diagnostic techniques, etc) are urgently needed by the government of Malawi through 

the MoH.  

The apparent reason to a continued high incidence of TB in the north health zone is due to an 

improved case detection rate (CDR) in the zone during the most recent past years. The other 

reason could be the improvement in recording and reporting of detected TB cases following 
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the introduction of DOTS without a real increase in TB case detection rate (Obermeyer, Abbott-

Klafter, Christopher, & Murray, 2008). Nevertheless, the increased trend might also be due to 

a true increase in TB incidence cases fuelled by the powerful interaction between HIV and 

tuberculosis (Corbett, et al., 2003). The TB and HIV co-infection among tested TB patients in 

our study was 43.4%. It might also be due to the notification of large backlog of TB cases that 

resulted from improved TB diagnostic access in the health zone.  

5.4 Effects of Social-Demographic Factors on TB Case Notification  

In this study, it was observed that there were more reported cases of tuberculosis (TB) among 

males than females across all age groups, with a female-to-male ratio of 1.57. The reasons 

behind this higher TB case notification in males compared to females in the north health zone 

of Malawi are not fully understood. However, some potential factors contributing to this 

disparity could be the time taken before seeking medical care and differences in access to 

healthcare. Men may be slower to report or get diagnosed with TB due to work or other 

considerations leading to delay in seeking medical assistance. Several studies have attempted 

to explain the differential TB infection rates between men and women, focusing on biological 

factors. Some studies suggest that men may be biologically more vulnerable to pulmonary TB 

(Neyrolles & Quintana-Murci, 2009). This finding is consistent with other studies conducted 

in Bangladesh, Malawi, and South Africa, which argue that TB is more challenging to diagnose 

in women (Begum, et al., 2001; Boeree & Harries, 2000;  Austin, et al., 2004).  

Research indicates that women with pulmonary TB may exhibit a different immune response 

to the disease compared to men (Long, 2001), resulting in different symptoms, signs, and 

outcomes. This can make it harder to detect TB in women, as they may not test positive on 

microscopic examination of sputum. Additionally, one study found that TB lung lesions might 

be less severe in women compared to men, potentially leading to milder symptoms and more 

challenging diagnosis in women (Long, 2002). 

This study also observed that TB rates are higher amongst males than females. This finding 

contradicts to a study done in regions of Pakistan bordering Afghanistan where more women 

than men were detected with TB (WHO, Tuberculosis in Women Factsheet, 2014). However, 

the reasons for higher TB rates among women in these regions are poorly understood. Although 

the Afghanistan National Strategic Plan for Tuberculosis Control attributes these rates to early 
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marriage and short intervals between pregnancies (Islamic Republic of Afghanistan, 2013), the 

lack of comparative data from countries with similar early marriage and high birth rates makes 

it difficult to determine whether this explanation holds true. In countries with high HIV 

prevalence, the numbers of women notified with TB are exceeding those of men. 

Our present study confirmed the discovery done by other researchers that people living with 

HIV are more likely to have TB as compared to people without HIV. This finding is comparable 

to that of a study done in Ethiopia (Tesfaye, et al., 2018). But this finding is not in line with a 

study from Sub-Saharan Africa (Nagua, Aboud, & Mwiru, 2017). The difference might be due 

to different levels of CD4 count and advanced WHO clinical stage that may determine the 

immunity of individuals living with HIV. With a low CD4 count (below 200), a person’s body 

becomes vulnerable to opportunistic infections such as the TB. Those HIV patients with a CD4 

count of above 200 might have some form of immunity to fight off infectious diseases than 

their counterpart. 

5.5 The influence of Setting on TB Case Notifications 

The study identified district variations in TB case notification rates. Mzimba district 

consistently had the highest TB case notification rates throughout the study period. The cold 

weather in the district, along with better diagnostic capacity, was suggested as potential factors 

contributing to the high rates. Interestingly, this study identified living in urban areas as a factor 

associated with TB, which contradicts the results from similar studies conducted in Pakistan 

(Khaliq, Syeda, & Chaudhry, 2015) and Ethiopia (Yeshi et al., 2018). The heterogeneity of TB 

burden across districts emphasizes the need for targeted interventions and tailored strategies to 

address the specific challenges faced by each district. 

If the inequality in TB case notification is indeed a result of limited access to healthcare, it may 

hinder the effectiveness of the DOTS strategy in achieving the global targets set by the World 

Health Organization (WHO) of a 70% TB case detection rate and an 85% treatment success 

rate. These targets aim to interrupt TB transmission, reduce mortality, and prevent the 

emergence of drug resistance (Keshavje & Farmer, 2012). Therefore, addressing the underlying 

factors contributing to the inequality in TB case notification is crucial to ensure the success of 

TB control efforts in the north health zone and similar settings. 



 

59 
 

5.6 The Choice for ARIMA Models 

In the study, the decision to utilize ARIMA models was justified based on several 

considerations, taking into account the availability of alternative modelling approaches such as 

non-linear regime-changing models and generalized linear models. 

Firstly, ARIMA models are widely recognized and extensively used in time series analysis due 

to their ability to capture and forecast linear dependencies and trends within the data. They 

have a solid theoretical foundation and have proven to be effective in capturing the 

autocorrelation and seasonality patterns often observed in time series data (Anwar M. , 

Lewnard, Parikh, & Pitzer, 2016). By incorporating autoregressive (AR), differencing (I), and 

moving average (MA) components, ARIMA models can adequately capture the temporal 

dynamics of the data and make accurate predictions. 

Secondly, while non-linear regime-changing models and generalized linear models have their 

merits, they may introduce additional complexity and assumptions that may not be appropriate 

for the specific characteristics of the data under study. Non-linear regime-changing models are 

useful for capturing abrupt changes or shifts in the underlying data-generating process, but their 

implementation requires identifying and estimating specific breakpoints or thresholds, which 

may not be well-suited for all datasets (Goutee, Ismail, & Pham, 2017). Similarly, according 

to (Chuang, Mazumdar, Park, Tang, & Nicolich, 2011) generalized linear models are valuable 

when dealing with non-normal or non-Gaussian data, but they may not adequately capture the 

sequential dependencies and temporal patterns present in time series data. GLMs with time 

factors can provide valuable insights into how count outcomes change over time, identify 

significant temporal patterns, and examine the impact of time-related predictors on the response 

variable (Arnold, Davies, Mbotwa, & Gilthorpe, 2020). 

Considering the objectives of the study and the nature of the data, the simplicity and 

interpretability of ARIMA models, coupled with their ability to capture linear dependencies 

and trends, were deemed sufficient for the analysis. It was crucial to choose a modelling 

approach that aligned well with the specific characteristics and objectives of our study, and in 

this case, the ARIMA models were considered a suitable choice for effectively capturing and 

forecasting the temporal dynamics observed in the time series data.
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CHAPTER SIX 

CONCLUSIONS, RECOMMENDATIONS, LIMITATIONS AND FUTURE 

DIRECTION OF RESEARCH 

This chapter summarises the findings of the study. The first section presents conclusions drawn 

from the findings; the second section provides some limitations to the study; the third section 

makes some recommendations, while the last one provides future direction of the research.  

6.1 Conclusions  

The following constitutes the study conclusions; 

1) In this study it has been observed that across all the age groups, more cases were 

reported among males than females TB patients (F: M ratio 1.57). At present, it is not 

fully understood why TB case notification has been observed to be higher in males than 

females in the north health zone of Malawi, but we can only speculate the reasons why. 

However, this is an important epidemiological finding from the point of view of public 

healthcare.  

2) Based on the study design and data orientation, the seasonal ARIMA model is the most 

appropriate model in predicting pattern in TB case notification, this is confirmed from 

the goodness-of-fit diagnostic’s results which confirmed the appropriateness of the 

ARIMA model. In addition, the selected forecast model, SARIMA (0, 1, 2) (1, 0, 0)4, 

satisfies all necessary assumptions (no serial correlation, constant variance and 

normality) and is better in all aspects than the other comparable models which have 

spikes at both the ACF and PACF plots. Therefore, having satisfied all model 

assumptions, ARIMA (0, 1, 2) (1, 0, 0)4 can be regarded as the best-fitted model for 

forecasting quarterly TB case notification in north health zone of Malawi. 
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3) The results from this study also indicate that there was a cyclic pattern in the TB case 

notification in the zone with peaks during the rainy season and at the end of the cold 

season. 

4) The results further show that number of TB case notification will follow a seasonal 

pattern for the next three years with an increasing trend as indicated by the forecasted 

number of TB case notifications.  

6.2 Recommendations  

The key recommendations based on the research findings and conclusions include the 

following; 

1) While the research results conclude that the TB prevalence in the north health zone of 

Malawi will not increase remarkable in the forthcoming years, there is a high 

probability that TB case notification is on the rise in the north health zone of Malawi 

and it will continue rising. This being the case, it is highly recommended that the 

government through the MoH put in some control measures/strategies in the north 

health zone focusing on minimising the increase of TB cases in the study area. We 

recommend that in both rural and urban settings/areas, clinicians need to educate people 

on health issues. In addition to that we recommend that healthcare facilities should be 

improved for timely diagnosis, treatment and prevention of the disease.  

2) We suggest that the results from this study can be used to plan service needs in the north 

zone and in Malawi as general by anticipating higher service use during the rainy season 

(January to March) and period after the cold season (July to September) – as high cases 

were recorded during these two periods. Local health services can also use these data 

to address potential service issues which contribute to delayed diagnosis of TB, for 

example after the cold season, or due to changes in clinical service provision at certain 

times of the year. 

3) HIV/TB collaboration initiatives should be intensified in the north health zone in order 

to reduce TB-related morbidity and mortality. 
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4) For (1) (3) to materialize, the Malawi government and its partners (especially those in 

non-governmental sector) should provide adequate funding for TB surveillance and 

control programmes. Without such funding, the north health zone will continue to suffer 

from the TB scourge and yet there is room for reducing it significantly if adequate funds 

are availed.   

5) Further research is necessary to explore alternative methodologies and incorporate 

additional predictors to improve the accuracy and reliability of TB case notification 

analysis and forecasting.  

6.3 Limitations of the Study 

The following are concluded to the research limitations that may be looked into in further 

analysis of this study; 

1) Malawi has three distinct seasons of cool dry (May to August), hot dry (September to 

November) and hot wet season (December to April) seasons. These seasonal patterns 

also apply to the north health zone of Malawi. However, the reporting of TB case 

notification data in the study area is done on a quarterly basis, which does not align 

with the weather seasons of the region. This overlap of quarterly reporting with weather 

season makes it challenging to observe clear and distinct seasonal patterns in the 

original TB case notification data. 

2) In our study, we primarily used conventional forecasting methods and focused on 

predicting the incidence of an infectious disease within the available data. However, to 

improve prediction accuracy and broaden our analysis, it is crucial to explore alternative 

models such as time-varying models and generalized linear models. Additionally, 

incorporating out-of-sample predictions can offer valuable insights and enhance the 

accuracy of predictions for a wider range of infectious diseases. Further investigation 

into these alternative approaches would be valuable for advancing our understanding 

and forecasting capabilities in the field of infectious diseases. 

3) Furthermore, incorporating additional predictors such as demographics, climatic 

conditions, and environmental factors, could further enhance the predictive capacity of 
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the model and provide a more comprehensive analysis of the underlying patterns.  The 

diverse geographical and climatic conditions in Malawi may have an effect in the 

progression of TB during different seasons across various geographic districts and 

regions and as such, it is important to note that the findings of this study cannot be 

extrapolated to the entire nation as a whole. 

4) Additionally, Quarterly population sizes for the health zone were not available to 

compare the quarterly TB case notification rates and quarterly incidence of TB cases. 

This data could have helped us compare the peaks and troughs of both the TB case 

notification rate and the seasonality of TB incidences. 

The identified limitations present potential avenues for future research in the field of TB case 

notification. Firstly, investigating the impact of departures from normality, tail properties, 

volatility clustering, and the influence of time-varying predictors on TB case notification could 

provide valuable insights. Future studies can explore robust techniques or transformations to 

address non-normality and develop models that appropriately account for heavy or fat tails in 

the data distribution. Furthermore, incorporating specialized models like GARCH that capture 

volatility clustering could enhance forecasting accuracy and risk management strategies in the 

context of TB. 

Secondly, the dynamic effects of time-varying predictors on TB case notification warrant 

further investigation. Future research could focus on developing models that effectively capture 

the nonlinearity and dynamic nature of these predictors. Such models are the generalized 

additive models (GAMs) which would capture non-linear and non-parametric relationships 

between predictors and the response variable. Nevertheless, our study aimed and predicting 

future trends in TB case notifications in the north health zone of Malawi hence, the GAMs 

models were not implored in this study.  

By addressing these limitations in future research, we can improve the rigor and reliability of 

TB case notification analysis, leading to more accurate insights and informing targeted 

interventions and policies. Ultimately, these advancements could also contribute to more 

effective TB control and prevention efforts. 
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Appendix 

TB case finding report (TB Registration sites only)        
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A Time Series Analysis of Patterns in TB Case Notification in North Health Zone in 

Malawi. 

Mathias D. Ngwira and Jupiter Simbeye1   

ABSTRACT 

Introduction: Tuberculosis (TB) is a respiratory infectious disease which shows seasonality. 

Seasonal variations in TB notifications has been reported in different parts of the world, 

suggesting that various environmental and demographic factors are involved in seasonality 

Objectives: this study aimed to identify a suitable time series model to investigate seasonal 

patterns in the notification of TB, additionally predicting/forecasting future trends of TB case 

notification in north health zone of Malawi 

Study design: This was a hospital-based retrospective time series study conducted among 

patients diagnosed for TB by using data recorded from January 1, 2013 to September 31, 2020, 

in the north health zone of Malawi 

Methods: This study used the TB data obtained from hospital records covering the period from 

January 2013 to September 2020. Data of 12,173 (4,800 were women) TB patients were 

analysed. The data were entered into Microsoft Excel 2013 and analysed using an open source 

statistical analysis package R-studio. The time series model was created by quarterly TB 

incidence data from 2013 – 2020. We investigated and found that SARIMA (0, 1, 2) (1, 0, 0)4 

is suitable for the given data. Quarterly incidences of TB and 95% confidence interval (CI) 

from 2021 to 2027 were predicted. 

Results: We detected a pattern of peaks and troughs (cyclic) in TB case notification in our 

study. This cyclic pattern of TB case notification showed some peaks in the number of TB 

cases reported during the first quarter 3, 207 (26.02%) - rainy season; and third quarter 3, 191 

(25.89%) - end of cold season. A decreasing trend in TB case notification was observed from 

2013 to 2018 followed by a sharp increase in 2019 and a drop in 2020. The predicted outcome 

                                                           
1 Department of Mathematical Sciences, University of Malawi, P.O. Box 280, Zomba, Malawi; 
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indicate that the reported quarterly Tb incidence cases will slightly increase in the nearest future 

in north health zone.  

Conclusion: The results showed that the number of TB case notification will follow a seasonal 

pattern for the next few years with an increasing trend as indicated by the forecasted number 

of TB case notifications. The findings suggest that progress in TB control in north health zone 

needs to be more intensified and adequate interventions are urgently needed.   

 

INTRODUCTION  

Tuberculosis (TB) is deadly infectious disease mainly caused by the Mycobacterium 

tuberculosis and the disease usually affects the lungs, although it can affect almost any part of 

the body [1].  TB is still one of the leading infections causing deaths which kills at least 2 

million people every year. The disease occurs when the bacteria overcome immune defences, 

multiply and become large enough in number to cause tissue damage [2]. The risk of infection 

depends on the concentration of the expelled bacilli from the patient, the level of ventilation in 

households and the duration of exposure of the uninfected individual to the patient. 

Globally, about one-third of the world’s population has dormant M. tuberculosis and hence is 

at the risk of getting an illness. That hinders the socio-economic development of a country, as 

75% of people with TB are within the economically productive age group of 15-54 years [3]. 

In 2018, 7.2 million people were estimated to develop active TB with 1.2 million TB deaths 

[4]. However, only 6.9 million cases were notified leaving a gap of cases that were not notified. 

TB cases detected in the public sector health facilities generally get notified through routine 

reporting systems. However, a large proportion of cases that are detected and treated in the 

private sector do not get notified in many settings. Thus under-notification remains a major 

issue especially in countries with high incidence and a large private sector. 

TB case-notification policies and practices are well established in low-incidence countries [5], 

and mandatory notification is often recommended as a policy or practice in programme reviews 

in high-incidence countries. However, there is little documentation available from high-
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incidence countries on either the status of these policies or the issues and challenges with 

implementing them. Understanding the current situation would be a first step to identifying 

opportunities and ways to make mandatory TB case notification operational in all settings. 

While seasonal patterns in diseases such as malaria, influenza and meningitis are well 

acknowledged in Malawi, this remains subtle for diseases such as TB. Seasonal patterns in TB 

case notification have been documented in other countries in Asia, Europe and other parts of 

Africa, e.g., Ethiopia [6] and Nigeria [5]. The patterns of seasonal peaks and troughs in TB 

numbers reported in such studies appear to vary by country and hemisphere. The reasons for 

such variations are currently not well understood and it is likely that there are several inter-

related factors. A few studies done in Ethiopia, Zimbabwe, Republic of South Africa and 

Morocco [7 - 10] have tried to indicate the seasonal variation in TB, but their findings are 

inconsistent and limited in scope. This study sought to fill this gap in knowledge using TB data 

reported in the health zone under study. 

The purpose was to identify a suitable time-series model to investigate seasonal patterns in TB 

case notification in the north health zone of Malawi and use the identified model to predict 

future trends in the incidence of TB in the north health zone of Malawi, which would provide 

some reference point for TB programming. Many models such as Markov chain models, 

autoregressive integrated moving average class models (ARIMA), general regression models, 

grey models and the exponential smoothing have been proposed, which can be used to forecast 

infectious diseases [11]. For better forecasting performance, a comparison of two models to 

forecast TB case notifications was studied. The findings from this study will add to the body 

of knowledge about the seasonality of TB case notification and other factors affecting trends 

in TB incidence. Knowledge about seasonality and other factors affecting trends in TB 

incidence will help in predicting future TB incidence epidemics and hence help in planning for 

service requirements, assess health needs and manage the disease by using the predictions as a 

reference information. The study has also suggested the potential causes or risk factors 

associated with the identified pattern and hence suggested interventions that could be put in 

place as a means to combat the spread of the disease in the study area.  
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MATERIALS AND METHODS  

Study Design  

This was a hospital-based retrospective study conducted among patients diagnosed for TB by 

using data recorded from January 1, 2013 to September 31, 2020 (constituting 32 

epidemiological quarters), in all the 64 health facilities in the north health zone of Malawi. The 

study used secondary data from the hospital records on TB case notifications. All forms of TB 

cases registered during the study period in all health institutions/facilities that provide DOTS 

services [21]. We carried out a time series analysis to test our hypothesis that TB case 

notifications show seasonality. 

Study setting 

Malawi is a low-income country located in Southern Africa and has a land area of 118, 000 

square kilometres. It shares boundaries with Zambia to the west, Mozambique to the east and 

Tanzania to the north and north-east. The country is divided into three administrative regions 

namely Northern, Central and Southern regions. For operation purposes, the Ministry of Health 

(MoH) has created 5 health zones with Southern and Central administrative regions each 

divided into two zones. The five health zones of Malawi are as follows: North, Central East, 

Central West, South East and South West. This study used data collected from the North zone 

of Malawi whose headquarters is in Mzuzu City. The north health zone comprises six 

administrative districts namely; Chitipa, Karonga, Rumphi, Nkhata-Bay, Mzimba and Likoma. 

 

Data Analysis and Procedure  

Data entry and merging was done in Microsoft Excel 2013. Exploratory analysis and generation 

of descriptive statistics for summarizing information was done using Microsoft Excel - Pivot 

Tables. Considering the importance of the data analysis stage, this study has partitioned the 

stage into sub-stages as indicated below for easy interpretation of the results. Box-Jenkins time 

series approach put forward as Autoregressive Moving Average (ARIMA) model and the 

Exponential smoothing methods were used in the modelling. 
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The Box-Jenkins methodology comprised of model identification, Parameter Estimation, 

model diagnostics and forecasting [12]. Time series of the data was plotted for the period 2013 

to 2020 to identify various time series components in the data. The original data was 

transformed by differencing and then re-plotted. Stationarity was assessed and confirmed using 

Augmented Dickey-Fuller (ADF) test on the transformed data. The series was judged stationary 

with the p-value of the ADF test   ≤ 5% level of significance. An Autocorrelation Function 

(ACF) and Partial Autocorrelation Function (PACF) were plotted to obtain the order p and q 

of Autoregressive (AR) and moving average (MA) respectively. Upon obtaining the order of 

AR and MA terms, the model was obtained.  

Development of the Model.  

This study was centred on forecasting time-series analysis of TB incidence data. Prior to model 

fitting, a stationarity check was done to determine that the time-series is constant in its mean 

and variance and that the mean and variance are not dependent on time. Secondly, a time-series 

plot was sketched to evaluate the behavioural pattern in the data over a period of seven years 

(figure 1). A multiplicative decomposition of the TB time-series was done to describe the 

seasonality components and trends. From the graph, we observed that the TB occurrence data 

had a cyclic pattern of movement. Firstly, we looked at ARIMA model to assess the TB data. 

The Seasonal ARIMA and the Exponential smoothing models were used in analysing the trend 

of the time series data independently of the seasonal components and predicting the quarterly 

TB incidence in north health zone in Malawi. 
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Figure 1. Quarterly TB case notification rates from January 2013 to September 2020 

 

Development of the SARIMA Model 

The seasonal ARIMA model (SARIMA) is an expanded form of ARIMA, which allows for 

seasonal factors to be reflected [13]. Time series seasonality is an unvarying pattern that recurs 

over S period of time until the pattern changes over again. The SARIMA model integrated both 

non-seasonality and seasonality factors in a generative model. In the SARIMA model, 

seasonality in AR and MA terms predict 𝑌𝑡 (TB case notifications) using data values and errors 

at time interval that are multiples of 𝑆. The SARIMA model is given as: 

𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄)𝑆 

Where 𝑝 = 𝐴𝑅 order in non- seasonality, d = difference in non-seasonality, 𝑞 = 𝑀𝐴 order in 

non- seasonality,𝑃 = 𝐴𝑅 order in seasonality, D = difference in seasonality, Q= 𝑀𝐴 order in 

seasonality, and S = recurrence of time periods in the seasonality pattern. The general SARIMA 

model has the following form 

Φ(𝛽𝑆)𝜑(𝛽)(𝑌𝑡 − 𝜇) = Θ(𝛽𝑆)𝜃(𝛽)𝜀𝑡 
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The non-seasonality components are; 

𝐴𝑅: 𝜑(𝛽) = 1 − 𝜑1(𝛽) − ⋯ − 𝜑𝑝𝛽𝑝 

𝑀𝐴: 𝜃(𝛽) = 1 + 𝜃1(𝛽) + ⋯ + 𝜃𝑞𝛽𝑞 

The seasonality components are; 

𝐴𝑅: Φ(𝛽𝑆) = 1 − Φ1 − Φ1𝛽𝑆 − ⋯ − Φ𝑃𝛽𝑃𝑆 

𝑀𝐴: Θ(𝛽𝑆) = 1 + Θ1𝛽𝑆 + ⋯ + Θ𝑄𝛽𝑄𝑆 

In the equations, 𝛽 represents the backward shift operator, 𝜀𝑡 stands for estimated residual error 

at t for 𝜇 = 0 and variance is constant and 𝑌𝑡 represents the TB notifications data at 

𝑡(𝑡 = 1,2,3, … , 𝑘) 𝝓 is a vector of the AR coefficients, 𝜃is a vector of the MA coefficients, 

Φ is a vector of the seasonal AR coefficients, and Θ is a vector of the seasonal MA coefficients.  

In the SARIMA model, seasonal subtraction of appropriate order is used to remove non-

stationary data from the series. A first order seasonal difference is the deviation between a 

value and the corresponding value from the previous year and it is expressed as:𝑌𝑡 = 𝑋𝑡 − 𝑋𝑡−𝑠 

for quarterly time series (S) = 4. 

 

Development of an Exponential Smoothing Model  

Exponential smoothing was first suggested in the statistical literature without reference to 

previous work by [14] in 1956 and then expanded by [15] in 1957. Exponential smoothing is a 

technique used to detect significant changes in data by considering the most recent data. Also 

known as averaging, this method is used in making short-term forecasts. The simplest form of 

an exponential smoothing formula is given by: 

𝐹𝑡 =  𝛼𝐴𝑡−1 +  (1 −  𝛼) 𝐹𝑡−1 
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Here; 𝐹𝑡  = smoothed statistic; 𝐴𝑡−1 = previous smoothed statistic; 𝛼 = smoothing factor of 

data; 0 < α < 1 and t = time period 

If the value of the smoothing factor is larger, then the level of smoothing will reduce. Value of 

α close to 1 has less of a smoothing effect and give greater weight to recent changes in the data, 

while the value of α closer to zero has a greater smoothing effect and are less responsive to 

recent changes. 

Exponential smoothing is best used for forecasts that are short-term and in the absence of 

seasonal or cyclical variations. As a result, forecasts aren’t accurate when data with cyclical or 

seasonal variations are present. As such, this kind of averaging won’t work well if there is a 

trend in the series. 

 

RESULTS OF THE STUDY 

TB incidence data from January 2013 to September 2020 was used to perform the time-series 

model fit. ACF and PACF plots were used to determine the key parameters (p, P, d, D, q, Q) 

of seasonal ARIMA model. In this study, we used the Box-Jenkin SARIMA and exponential 

smoothing approaches to identify the best model to forecast future patterns in the TB case 

notification rate in the north health zone of Malawi. We used auto.arima function in R to 

identify the best model to predict future trends of TB case notifications.  In this study, we used 

two principal model selection methods of Akaike Information Criteria (AIC) and the Bayesian 

Information Criteria (BIC). The model with the smallest values of AIC and BIC were regarded 

as the best model to predict future incidences of TB in the north health zone in Malawi.  

 

TB Case Notification Rate as Stratified by Age Groups, Sex, HIV Status, Year and 

District 

The results of the study revealed that the number of TB case notification rate was almost 

constant from 2013 to 2015 followed by a slight decrease in 2016. We observed a slightly sharp 
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increase of TB case notification rates between 2017 and 2019 followed by a sharp decrease in 

2020 which could be explained due to Covid-19 pandemic whereby there was apathy from the 

general population in seeking health care. The highest case notification rate was observed in 

2019 and could be due to mass campaigns about care seeking behaviour which improved and 

influenced people’s understanding about timely health seeking behaviours.   

The results further revealed that males had higher notification rates than females and the age 

category 0 – 24 years has the lowest notification rates than others. In terms of HIV status, there 

was no variation of notification rates for both positive and negative TB patients across the study 

period. Furthermore, the results showed that Mzimba district had the highest notification rates 

of the rest of the district. This could be explained due to cold weather in the district. A decrease 

in vitamin D and sunlight significantly increases the incidence of smear and sputum positive 

tuberculosis [16]. 

 

Stationarity of the Transformed Data 

Our original data was transformed by taking the difference of the data in order to make it 

stationary and allow us to apply ARIMA and Exponential smoothing on the data. It was found 

that the transformed series achieved stationarity. The Augmented Dickey-Fuller test 

statistically confirmed the stationarity of the series (ADF = - 5.7044, p-value = 0.01). From the 

plots of ACF and PACF (figure 4)  
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Figure 4. Time plot, ACF and PACF plot for the ARIMA (0, 1, 2) (1, 0, 0)4 model residual 

 

 

Analysis of the Competing Models 

In order to select the best model to be used in the predictions, three competing ARIMA models 

were further tested and compared with the Exponential smoothing model in order to select the 

model with the best predictive ability. Table 1 below shows the estimates of parameters from 

the three competing ARIMA models.  
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Table 1: Estimates of parameters from the three competing ARIMA models.  

Model  AIC AICc BIC 

ARIMA (1, 1, 0) 255.58 265.03 258.39 

ARIMA (1, 1, 3) 254.36 254.36 258.86 

ARIMA (1, 1, 1) 252.50 252.10 256.11 

 

Exponential smoothing was tested and compared to the other three competing ARIMA models. 

Figure 3 below shows a graphical presentation of the Exponential smoothing model.  From the 

graph below, it is shown that the exponential smoothing method produced forecasts that lagged 

behind the actual trend.  

 

Figure 3. Forecast from the Exponential smoothing method 

Figure 4 below shows the graphical presentation of the three competing ARIMA model and 

the seasonal ARIMA model. From figure 4 below, it was noted that ARIMA (0, 1, 2) (1, 0, 0)4 

has the best ability to predict future trends in the TB case notifications. The other models fail 
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to qualify because they just show a straight line into the future which could not reflect on reality 

of the future patterns in the TB case notifications.  

 

Figure 4. Forecasts from the four competing ARIMA models 

 

Predicted Trends of TB case Notifications 

We applied the Winter’s Multiplicative method to the seasonal ARIMA (0, 1, 2) (1, 0, 0)4 

model to predict future trends in TB case notifications in the north health zone of Malawi at 

95% confidence interval (CI). The predictions were done for the next 12 quarters (fourth 

quarter of 2020 to third quarter of 2027). Figure 5 below shows the graphical presentation of 

the forecasted TB case notifications for the north health zone in Malawi. The predictions were 

done on the assumptions that the shall be no any extra interventions done by the government 

and other stakeholders that would otherwise have an influence on the number of TB case 

notified in the health zone. We assumed that the current prevailing interventions will continue 

for the next few years.  
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Figure 5. The graphical presentation of the predicted/forecasted number of TB case 

notification for the north health zone of Malawi from October 2020 to December 2027 

 

Table two below presents the comparison of the predicted incidences of TB in the north 

health zone of Malawi from 2020 to 2027.  

 

Table 2: Comparison of Competing Models for Predicting Future Seasonal Patterns in 

TB Case Notification in the North Health Zone of Malawi from October 2020 to 

September 2023 

Point of 

forecast 

ARIMA (0,1,2) 

(1,0,0)4 

ARIMA (1, 1, 

0) 

ARIMA (1, 1, 

3) 

ARIMA (1, 1, 

1) 

2020 Q4 421.24 398.52 406.69 400.92 

2021 Q1 458.89 397.83 423.92 400.92 
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2021 Q2 483.00 397.40 433.52 400.92 

2021 Q3 484.25 397.14 433.03 400.92 

2022 Q4 469.00 396.98 433.06 400.92 

2023 Q1 442.44 396.77 433.06 400.92 

2023 Q2 425.43 396.75 433.06 400.92 

2023 Q3 424.54 396.73 433.06 400.92 

2023 Q4 435.31 396.72 433.06 400.92 

2024 Q1 454.04 396.72 433.06 400.92 

2024 Q2 466.04 396.72 433.06 400.92 

2024 Q3 466.66  396.72 433.06 400.92 

2024 Q4 459.08 396.72 433.06 400.92 

2025 Q1 445.86 396.72 433.06 400.92 

2025 Q2 437.39 396.72 433.06 400.92 

2025 Q3 436.95 396.72 433.06 400.92 

2025 Q4 442.31 396.72 433.06 400.92 

2026 Q1 451.63 396.72 433.06 400.92 

2026 Q2 457.61 396.72 433.06 400.92 
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2026 Q3 457.92 396.72 433.06 400.92 

2026 Q4 454.14 396.72 433.06 400.92 

2027 Q1 447.56 396.72 433.06 400.92 

2027 Q2 443.34 396.72 433.06 400.92 

2027 Q3 443.13 396.72 433.06 400.92 

2027 Q4 445.79 396.72 433.06 400.92 

 

 

DISCUSSION 

Tuberculosis (TB) is a disease that continues to be a major public health problem amongst the 

top ten disease causes of mortality. Millions of people continue to fall sick with TB each year, 

particularly in developing countries [17, 18]. In this study, a seasonal ARIMA model was 

developed to forecast future quarterly incidence of TB cases in north health zone of Malawi. 

From our results we can clearly see that the SARIMA (0, 1, 2) (1, 0, 0)4 provided a better 

forecast of the TB the data. The model was appraised by AIC, AICc, BIC and the white noise 

residuals. [19] investigated the performance of six different forecasting methods, including 

linear regression, moving average, decomposition, ARIMA, Neural Network and Holt-

Winter’s for monthly tuberculosis data prediction and the results from the study showed that 

the most appropriate model was ARIMA [20]. [21] investigated two models of ARIMA and 

(GRNN)-ARIMA in prediction of tuberculosis incidence. The time series of tuberculosis shows 

a gradual secular decline and a striking seasonal variation. 

The predicted outcome indicate that the reported quarterly Tb incidence cases will slightly 

increase in the nearest future in north health zone. The findings suggest that progress in TB 
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control in north health zone needs to be more intensified and adequate interventions are 

urgently needed.   

The first quarter (rainy season) was the dominant quarter seconded by third quarter. Fourth 

quarter has the least number of TB cases during the study period. We can postulate that high 

cases of TB reported during the third quarter, which lies between the cold season and the hot 

season. It is possible that this was so because of a number of reasons; Firstly, poor ventilated 

rooms crowded with people could increase the chances of transmission among the infections 

source and the contractors in cold seasons. In the north health zone of Malawi, cold season is 

from May to August, and the coldest months are June and July in most of the year. During this 

cold period, people are more likely to stay indoors and close the windows because of low 

temperatures. We therefore suspect that TB transmission is rampant during this period due to 

lack of fresh air.  

Secondly, delays to seek medical health care in the coldest months (June and July) could 

possibly increase the risk of transmission. [21] postulated that people could not feel 

comfortable to seek medical help when it is very cold unless otherwise. This being the case, 

people tend to seek medical help when the weather is somewhat warmer (in our scenario this 

could be between August and September). Thus, the consultation rate between patients and 

health care givers during this warmer period is relatively high. According to [22] delay in health 

care seeking contributes to diagnosis delay which may increase the risk of disease transmission 

(due to the longer communicable period of TB) in cold seasons. It is further believed that in 

winter, symptoms of TB may possibly not be seen immediately after becoming infected, but 

when summer approaches and the temperature increases, the bacterium starts proliferating and 

growing with positive symptoms of the infection [21]. 

 

CONCLUSION  

TB continues to be a serious threat to public health in north health zone in Malawi. The study 

identified SARIMA (0, 1, 2) (1, 0, 0)4 as the best model to forecast future trends of TB case 

notifications in the north health zone of Malawi. The model indicates that the TB prevalence 

in north health zone will not increase remarkably in the forthcoming years; it is essential to 
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effect better TB incidence control measures in the health zone under study. The observed 

pattern of TB notifications showed that there was a cyclic pattern in the TB case notification 

in the zone with peaks during the rainy season and at the end of the cold season. The predicted 

case notification indicate that the number of TB case notification will follow a seasonal pattern 

for the next three years with an increasing trend as indicated by the forecasted number of TB 

case notifications. The TB prevalence seasonality from the model also indicate a great necessity 

for TB interventions, focused on reducing infectious disease transmission with co-infection 

with HIV and other concomitant diseases and also public events and over clouded places.  
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